ADDITIVITY RULES FOR THE ESTIMATION OF THERMOCHEMICAL PROPERTIES¹⁸

S. W. BENSON, F. R. CRUICKSHANK,¹⁶ D. M. GOLDEN, G. R. HAUGEN, H. E. O'NEAL,^{1e} A. S. RODGERS,¹⁴ R. SHAW, and R. WALSH¹⁶

Department of Thermochemistry and Chemical Kinetics, Stanford Research Institute, Menlo Park, California 94025

Received April 24, 1968

Contents

I.	Introduction	279
п.	General Discussion	279
III.	Hydrocarbons	280
	A. Alkanes	280
	B. Alkenes	281
	C. Alkynes	283
	D. Aromatics	283
	E. Polyaromatics	283
	F. Cyclic Alkanes and Alkenes	285
IV.	Oxygen-Containing Compounds	293
V.	Nitrogen-Containing Compounds	294
	A. Amines	294
	B. Imines	295
	C. Cyanides	295
	D. Nitro Compounds	295
	E. Nitrites and Nitrates	296
	F. Hydrazines, Azo Compounds, and	
	Tetrazines	296
	G. Amides and Imides	296
	H. Nitrogen-Containing Ring Compounds	296
	I. Some Unique Group Compounds	298
	J. Miscellaneous Compounds	299
VI.	Halogen-Containing Compounds	301
VII.	Sulfur, Boron, Phosphorus Compounds and	
	Organometallic Compounds	304
	A. Organosulfur Compounds	305
	B. Organophosphorus Compounds	309
	C. Organoboron Compounds	309
	D. Organometallic Compounds	310
	E. Miscellaneous Compounds	311
VIII.	Guide to the Use of the Group Tables	313

I. Introduction

The purpose of this review is to extend, as a result of the large increase in data since 1958, the group additivity scheme for estimation of thermochemical properties as originally proposed by Benson and Buss² (BB). Because the principal interest of the authors is the application of thermochemistry to chemical kinetics, C_p° contributions have been tabulated as a func-

tion of temperature and all values predicted from the group tables refer to the gas phase. The original concept has been expanded to include cyclic compounds and, whenever possible, the experimental data are critically reviewed up to December of 1967. Sufficient data are available for hydrocarbons to render suspect any data which deviate from the value predicted by the scheme, by more than 1 cal/(mole deg) in C_p° or S° , or 1 kcal/mole in ΔH_f° . Somewhat larger errors in experimental values may therefore be detected by comparison with predicted values. From the tables of experimental data, it is clear that there are many common compounds for which the values of heat capacity and entropy are unmeasured.

In the interests of accuracy, most weight has been given to data produced after 1930, but the accuracy of thermochemical data is not uniform over all classes of compounds, and the reader is referred to the text on the appropriate compound type for a critical appraisal of the associated errors. Sources of inaccuracy in heats of formation are the inherent error in the use of heats of combustion, which are typically about ± 1 kcal/mole, the neglect by many authors of the change in latent heat of vaporization with temperature, and the necessity of estimating unmeasured latent heats. This last is smaller than the first two sources, the formula used in this review having been found to give satisfactory results. It is $\Delta H_{vap(25^\circ)} =$ $S_{\rm T}[(1.76 \times 10^{-3})t_{\rm B} + 0.253]$, where $\Delta H_{\rm vap(25^\circ)}$ is in kilocalories/ mole, $S_{\rm T}$ is the Trouton constant, usually 22 cal/(mole deg); and $t_{\rm B}$, the boiling point, is in degrees centigrade. Entropies and heat capacities are determined either calorimetrically or from vibrational assignment and statistical formulas. In the former case, errors are likely to be quite small, and in the latter case errors depend on the accuracy of the assignment, especially of the lower frequency modes, and often on the suitability of estimated barriers to internal rotation.

II. General Discussion

The reader is referred to BB^2 for an extensive discussion of additivity rules and the hierarchy of approximations which exist. It is sufficient for the purposes of the present review to remind the reader of the basic concept and the assumptions involved.

For the disproportionation reaction

 $RNN'R + SNN'S \longrightarrow RNN'S + SNN'R$

the group additivity law assumes that $\Delta \Phi = \Delta \Phi_{\sigma}$, where Φ is any molecular property and $\Delta \Phi_{\sigma}$ is the contribution to that property due to symmetry changes and optical isomerism.

^{(1) (}a) This work has been supported in part by Grant No. AP-00353-03 from the Department of Air Pollution, Public Health Service. (b) University of Strathclyde, Glasgow C₁, U. K. (c) San Diego State College, Department of Chemistry, San Diego, Calif. (d) Texas A & M University, Department of Chemistry, College Station, Texas. (e) The University, Department of Chemistry, Whiteknights Park, Reading, Berkshire, England.

⁽²⁾ S. W. Benson and J. H. Buss, J. Chem. Phys., 29, 546 (1958).

		(C-(C)(H));; C-(C);	2(H)2; C-4	Ацка (C) ₃ (H); С	nes (C)₄; All	kane gai	uche Corre	ction)				
	Δ <i>I</i>	<i>H</i> °			S	°		C_,°	300 ^e		C	°800	
	Obsd	Estd	Δ^{b}	σ	Obsd	Estd	Δ	Obsd	Estd	Δ	Obsd	Estd	Δ
Ethane	-20.24	-20.16	-0.08	2×3^2	54.85	55.09	-0.2	12.65	12.38	0.3	25.83	26.04	-0.2
Propane	-24.82	-25.11	0.29	2×3^{3}	64.51	64.51	0.0	17.66	17.88	-0.2	37.08	37.11	0.0
n-Butane	-30.15	-30.06	-0.09	2×3^{3}	74.12	73.93	0.2	23.40*	23.38	0.0	48.23	48.19	0.0
n-Hexane	-39.96	-39.96	0.00	2×3^2	92.83	92.77	0.1	34.37*	34.37	0.0	70.36	70.34	0.0
n-Octane	-49.82	-49.86	0.04	2×3^{2}	111.55	111.61	-0.1	43.35*	45.36	0.0	92.50	92.48	0.0
n-Decane	-59.67	-59.76	0.09	2×3^2	(130.17)	130.45	-0.3	(56.34)	56.35	0.0	(114.63)	114.63	0.0
n-Dodecane	-69.52	-69.66	0.14	2×3^2	(148.78)	149.29	-0.5	(67.33)	67.34	0.0	(136.76)	136.78	0.0
2-Methylpropane	-32.15	-32.14	-0.01	34	70.42	70.44	0.0	23.25*	23.11	0.1	48.49	48.37	0.1
2-Methylbutane	-36.92	-36.29	-0.63	38	82.12	82.04	0.1	28.54*	28.61	-0.1	59.71	59.45	0.3
2,2-Dimethylpro-													
pane	-39.67	-39.82	0.15	35 × 22	72.23	72.88	-0.7	29.21*	29.14	0.1	60.78	60.85	-0.1
2,3-Dimethylbutane	-42.49	-42.52	0.03	34	87.42	87.39	0.0	33.76	33.84	0.1	70.7	70.70	0.0
2,2,3-Trimethyl-													
butane	-48.96	-48.60	-0.36	36	91.61	91.70	-0.1	39.54*	39.86	-0.3	82.73	85.18	-0.5
2,2,3,3-Tetramethyl-													
butane	-53.99	-54.68	0.69	3 ⁸ × 2	93.06	93.45	-0.4	46.29*	45.89	0.4	96.18	95.66	-0.5

Table I^a A 11

Data from API compilation, except when noted. b Alkane group values for ΔH_i° and S° are from ref 2. c Data marked with an asterisk used in a regression coefficient analysis to obtain the group values.

For the molecular properties of interest here, $\Delta H_{\rm T} \rightarrow 0$, $\Delta C_{\rm p}{}^{\circ}{}_{\rm T} \rightarrow 0$, and $\Delta S_{\rm T} \rightarrow \Delta S_{\sigma} = R \ln K_{\sigma}$, where $K_{\sigma} =$ $\sigma(RNN'R)\sigma(SNN'S)/\sigma(RNN'S)\sigma(SNN'R), \sigma(x)$ being the symmetry number including both internal and external symmetry. An additional term for entropy of mixing, due to the existence of optical isomers, will be discussed below.

If the molecular framework NN' is two atoms or greater, these relationships imply the additivity of group properties, which include all nearest neighbor interactions, since a group is defined as an atom together with its ligands (e.g., in the group $C-(H)_{3}(C)$ the central C atom is bonded to three H atoms and one C atom). Thus the equation

CH₃OH + CH₃CH₂OCH₃ → CH₃CH₂OH + CH₃OCH₃

implies the additivity of the properties of the groups $C-(H)_{3}(C)$, $C-(H)_{3}(O)$, O-(C)(H):, $C-(H)_{2}(C)(O)$, and $O-(C)_{2}$, if the appropriate $\Delta \Phi = \Delta \Phi_{\sigma}$.

Several groups can be uniquely determined from simple molecules with well-known properties, but there are some groups which exist only in conjugate pairs, either as sums or differences. In this latter case, we have arbitrarily assigned values to one of the pairs. This was not done previously but greatly facilitates calculations without affecting the value of any property of any molecule.8

The basic approximation of group additivity makes no allowance for next-nearest neighbor interactions, but there are some molecules in which such interactions have considerable influence on the molecular properties. Such refinements are tabulated in the present scheme under the label of conformational corrections. The group values in the tables are based on the most stable conformation.

Since all carbon-carbon double bonds are between two sp² carbon atoms, the nomenclature C_d -(H)₂ is used to replace the former, C_d -(C_d)(H)₂, etc. Similar treatment is given to triple bonds, C_t -(X), aromatic ring carbon atoms, C_B -(X), and C_a , the allenic group >C==C<. Other group abbreviations are noted at the end of the appropriate table.

Arbitrarily assigned group values are indicated by placing the group name in square brackets. Individual values which have been estimated are in parentheses. Values of Δ , which is defined as the difference between observed and estimated values, are quoted as [0] when the compound in question is the sole basis for a particular group. Entropies and heat capacities calculated from spectroscopically determined vibrational frequencies are here considered as measured, even if internal rotation barriers were transferred from another molecule. All original references are given where possible with the exception of values obtained from the American Petroleum Institute compilation. "Selected Values of Physical and Thermochemical Properties of Hydrocarbons and Related Compounds," by F. D. Rossini, et al., Carnegie Press, Pittsburgh, Pa., 1953, which is the source of all unreferenced entries. If any entry comes from more than one source, one of which is the above, it is referenced as A.

Recognizing that their search for data, while it was exhausting, may not have been exhaustive, the authors would be grateful to have any values of thermodynamic properties of the type listed here brought to their notice. When sufficient such numbers are available, we will issue a set of revised tables.

III. Hydrocarbons

A. ALKANES $(C-(C)(H)_3; C-(C)_2(H)_2; C-(C)_3(H);$ C-(C)₄, ALKANE gauche)

The values of the group contribution to heat of formation and entropy were taken directly from BB,2 as was the value for the gauche correction. Values for the heat capacity, obtained from a multiple linear regression coefficient analysis (MLRCA), are listed in Table I.

Corrections to the heat of formation for gauche configurations are made one for each such conformation in a molecule. Thus, observing along a C(sp³)-C(sp³) bond, as shown in Figure 1, the gauche corrections are as listed for the substituted butanes.

Analysis of the simply branched alkanes will show deviations predominantly small and of the same sign, *i.e.*, ΔH_{obsd} -- $\Delta H_{\rm estd} \sim 0.4$ kcal/mole. This is done deliberately to avoid

⁽³⁾ This represents a change of policy; see ref 42 in ref 2.

Figure 1.

Table II

The C₉ Hydrocarbons^a

	Δ <i>F</i>	Ir°	
Compound	Obsd	Estd	Δ
3,3-Diethylpentane	-55.44	-53.22	-2.22
2,2,3,3-Tetramethylpentane	-56.70	- 58.03	1.33
2,2,3,4-Tetramethylpentane	- 56.64	- 58.98	2.34
2,2,4,4-Tetramethylpentane	-57.83	-61.23	3.40
2,3,3,4-Tetramethylpentane	-56.46	- 59.00	2.54

Values from A. Labbauf, J. B. Greenshields, and F. D. Rossini, J. Chem. Eng. Data, 6, 261 (1961).

excessively large errors in the heavily substituted alkanes. The largest error of +3.4 kcal/mole among the latter occurs with 2.2.4.4-tetramethylpentane. This compound has two t-butyl groups on the same atom and six gauche interactions. Data from related compounds, such as di-t-butyl ether, will show that gauche interactions do not account sufficiently for the strain which is between H atoms and C atoms separated by three C atoms, a next-next-nearest neighbor interaction. No simple scheme can ever hope to account for such a distant interaction, and these may be expected to occur frequently in heavily branched compounds. Thus the discrepancies shown in Table II are probably real.

B. ALKENES

As can be seen from Table III, 4-13 there is a comparatively large number of values of the heats of formation of this class of compounds. Group contributions to the heat of formation were arrived at by subtracting all alkane group and gauche contributions and obtaining a MLRCA for the molecules indicated in the table. (The cis interaction was fixed at 1,00 kcal/mole, except when one of the interacting groups is a t-butyl, in which case the *cis* correction is 4.00 kcal/mole, or when a molecule has two cis interactions, such as 2,3-dimethylbut-2-ene, where the total cis correction is 3.00 kcal/mole.)

- (9) J. P. McCullough and D. W. Scott, ibid., 81, 1331 (1959).
- (10) J. D. Rockenfeller and F. D. Rossini, J. Phys. Chem., 65, 267 (1961).
- (11) F. M. Fraser and E. J. Prosen, J. Res. Natl. Bur. Std., 54, 143 (1955).
- (12) K. W. Egger and S. W. Benson, J. Am. Chem. Soc., 87, 3311 (1965).
- (13) N. P. Bekkedahl and L. A. Wood, J. Res. Natl. Bur. Std., 19, 55 (1937).

The available data for entropy and heat capacity are considerably less than for the heats, but sufficient measured values exist to determine the group contributions from the MLRCA fit of the data so marked in the table.

The question of gauche interactions along a $C(sp^3)-C(sp^2)$ bond has been taken into account, as indicated in Figure 2. In this figure (1a, 2a, and 3a) is depicted the supposed most stable conformations when the sp³ carbon has a hydrogen substituent (indicated by dashed line), as the sp³ carbon increases in substitution from one to three heavy groups (indicated by full lines). It seems clear that in cases 1a and 2a no significant interaction need arise. In case 3a, while significant interaction may be expected, it will always be taken into account by the group $C-C_d(C)_3$, which always implies the presence of the second sp² carbon, which is interacting with the heavy substituents on the sp³ carbon.

Figure 2 (1b, 2b, and 3b) depicts what are supposed to be the most stable conformations with heavy substituents on the central sp² carbon (1a, 2a, and 3a). It is seen that in 1b, we might expect to have one alkene gauche correction, while molecules of the class of 2b and 3b have two alkene gauche corrections.

Comparing the C-C distances of the interacting groups in the alkene and in the alkane cases, about 3.2 Å in the former and 2.8 Å in the latter, we expect a smaller effect. In fact, the effect is small enough that we have chosen to ignore it in cases of the type 1b (i.e., one gauche) and to make a correction only in cases 2b and 3b. The correction in Table XXXIII is this total correction.

Entropy and heat capacity have been determined from a MLRCA fit of the indicated data. The cis correction to the entropy in entropy units is +1.2 for but-2-ene, 0 for all other 2-ene's, and -0.6 for 3-ene's.

There are no measured data to lead to entropy and heat capacity values for the groups $C_{-}(C_d)(C)_2(H)$ and $C_{-}(C_d)(C)_3$. The group values have been estimated as shown in the footnotes of Table III. These estimates lead to significantly different values than do the incremental estimates of the API original reference. These are first encountered in 3-methylbut-1-ene and 3,3-dimethylbut-1-ene, respectively. (Entropy and heat capacity values in API, other than those tabulated here, are all estimated.)

2. Dienes
$$(C_a; C_d-(C_d)(H); C_d-(C_d)(C); C-(C_d)_2(H)_2)$$

These molecules with allenic double bonds can be fitted to group values by the introduction of the C_a group, which accounts for the properties of >C=C=C<. The end carbon atoms are treated as normal C_d 's. As can be seen from Table III, this accounts quite well for both the measured data and the incremental estimates in API with a mild exception in the heat capacity values of 1,2-pentadiene.

For the nonallenic dienes, there are enough data to get a value for all group contributions to the heat of formation, but the contributions of the group $C-(C_d)_2(H)_2$ to the entropy

⁽⁴⁾ H. F. Bartolo and F. D. Rossini, J. Phys. Chem., 64, 1686 (1960).

⁽⁵⁾ K. W. Egger, J. Am. Chem. Soc., 89, 504 (1967).

⁽⁶⁾ D. M. Golden, et al., ibid., 86, 5416 (1964).

⁽⁷⁾ K. W. Egger and S. W. Benson, ibid., 88, 236 (1966).

⁽⁸⁾ D. W. Scott, et al., ibid., 71, 2769 (1949).

						Alken	es				,					
		H°H			(S.				ڻ ل	300			800		, 1
	Obsd	Estd	δ	Ref n	σ	Obsd	Estd	Φ	Ref	Obsd	Estd	δ	Obsd	Estd	Φ	Ref
	Monoo	lefins: C _d –(F	l) ₂ ; C _d -(C)	H); C ₁ -(C)	2; C-(C _d)	(C)(H) ₂ ; C	C_(C))(C)₂(H); C-((ی;C)(C)3; م	is Correctio	on; Alken	e gauche				
Ethene	12.50*	12.22	0.28	6	8	52.45	52.46	0.0		10.45*	10.21	0.2	20.20	20.13	0.1	
Propene	4.88*	4.78	0.10	3		63.80*	63.72	0.1		15.34*	15.45	-0.1	30.68	31.73	0.0	
But-l-ene	- 0.03*	01	-0.04	æ		73.80*	73.52	0.3	A, 6, 7	20.57	20.58	0.0	41.80	41.65	0.2	
cis-But-2-ene	- 1.67*	- 1.97	0.30	32	× 2	72.10*	72.08	0.0	A, 6, 7	18.96*	19.36	-0.4	40.87	40.94	0.1	
trans-But-2-ene	- 2.67*	- 2.97	0.30	32	× 2	70.86*	70.88	0.0	A, 6, 7	21.08*	20.70	0.4	41.50	41.33	0.2	
2-Methylpropene	- 4.04	- 3.56	-0.48	32	× 2	70.17	70.37	-0.2		21.39*	21.57	-0.2	41.86	41.91	0.1	
Pent-1-ene	- 5.00*	- 4.96	-0.06	ŝ		83.25*	83.32	-0.1	A, 7, 8	26.31	26.07	0.2	52.95	52.72	0.2	
cis-Pent-2-ene	- 6.71*	- 6.73	0.02	ŝ	61	81.56*	82.15	-0.6	A,7	(24.45)	24.49	0.0	(52.29)	52.16	0.1	
trans-Pent-2-ene	- 7.59*	- 7.73	0.14	ŝ	8	81.96*	82.15	-0.2	A,7	(26.04)	25.82	0.2	(52.45)	52.55	-0.1	
2-Methylbut-1-ene	- 8.68*	- 8.32	-0.36	ŝ	8	81.15*	81.15	[0]	6	26.41*	26.70	-0.3	53.15	53.13	0.0	6
3-Methylbut-1-ene	- 6.92*	- 6.78	-0.14	ŝ	2	79.70)	80.35	-0.7		$(28.47)^{b}$	25.88	2.6	(53.85) ^b	53.23	-0.6	
2-Methylbut-2-ene	-10.17*	-10.30	0.13	ŝ	2	80.92	81.06	-0.1		25.22*	25.49	-0.3	52.05	52.11	0.1	
Hex-1-ene	- 9.96	- 9.88	-0.08													
cis-Hex-2-ene	-12.51*	-11.68	0.83	4												
trans-Hex-2-ene	-12.88*	-12.68	-0.20	4												
cis-Hex-3-ene	-11.38*	-11.49	0.11	4												
trans-Hex-3-ene	-13.01*	-12.49	-0.52	4												
2-Methylpent-1-ene	-14.19*	-13.27	-0.92	4												
3-Methylpent-1-ene	-11.82*	-11.73	-0.09	4												
4-Methylpent-1-ene		-11.17	-1.07	4												
2-Methylpent-2-ene	-15.98*	-15.06	0.92	4												
3-Methyl-cis-pent-2-ene	-14.86^{*}	-15.06	0.20	4												
3-Methyl-trans-pent-2-ene	-15.08*	-15.06	-0.02	4												
4-Methyl-cis-pent-2-ene	-13.73*	-13.53	-0.20	4												
4-Methyl-trans-pent-2-ene	-14.69*	-44.53	-0.16	4												
2-Ethylbut-1-ene	-13.38*	-13.18	-0.20	4												
2, 3-Dimethylbut-1-ene	-15.85*	14.65	-1.20	4							:	•		ļ		
3, 3-Dimethylbut-1-ene	-14.70*	-13.71	6.0-	4 4 ¥	~	82.16)°	80.95	1.2		°(96.95)	31.82	-1.4	(03.6)	1.00	-2.1	
2, 3 Difficultion - 2-505	-10.00	-10.74	00.0	t												
trepet-vic	-17.6	-17.6	0.0	S												
cis-Hept-2-ene	-16.9	-16.6	-0.3	5												
trans-Hept-3-ene	-17.6	-17.4	-0.2	5												
cis-Hept-3-ene	-16.9	-16.4	-0.5	5												
3-Methyl-cis-hex-3-ene	-19.22*	-19.83	0.61	10												
3-Methyl-trans-hex-3-ene	-18.60*	-19.83	1.23	10												
2, 4-Dimethylpent-1-ene	-20.27*	-19.50	-0.77	10												
4, 4-Dimethylpent-1-ene	-19.20*	-18.17	-1.13	10												
2,4-Dimethylpent-2-ene	-21.44	-21.40	-0.04	10												
4,4-Dimethyl-cis-pent-2-ene	-17.60*	-17.46	-0.14	10												
4,4-Dimethyl-trans-pent-2-ene	-21.46*	-21.47	0.01	0												
3-Methyl-2-ethylbut-1-ene	-19.25*	- 19.41	0.16	2 9												
2,3,3-1 rimethylbut-1-ene	-20.07	- 20. 34	17.0	21												

Table III^a

Oct-1-ene	-19.82^{*}	-20.14	0.32													
2,2-Dimethyl-cis-hex-3-ene	-21.77*	-22.23	0.46	10												
2,2-Dimethyl-trans-hex-3-ene	26.16*	-26.23	0.07	10												
2-Methyl-3-ethylpent-1-ene	-24.40*	-24.55	0.15	10												
2,4,4-Trimethylpent-1-ene	-26.68*	-26.38	-0.30	10												
2,4,4-Trimethylpent-2-ene	-25.50*	-25.80	0.30	10												
						Allenic D	ienes: C _a									
Allene	45.92*	46.72	-0.80		2²	58.30*	58.7	-0.4		14.16*	14.1	0.1	25.42*	25.4	0.0	
.2-Butadiene	38.77*	38.97	-0.20	A, 11	e	70.03*	70.0	0.0		19.23*	19.4	-0.2	36.01*	36.0	0.0	
L2-Pentadiene	33.61*	34.21	-0.60	II	÷	(1.67)	79.8	-0.1		(25.3)	24.5	0.8	(47.7)	47.4	0.3	8
.3-Pentadiene	31.79*	31.12	0.57	Ξ	$3^{2} \times 2$	(0.67)	78.6	0.4		(24.3)	24.6	-0.3	(46.6)	46.6	0.0	
3-Methyl-1,2-butadiene	(31.00)	30.64	0.36		2×3^{2}	(76.4)	76.2	0.2		(25.3)	25.5	-0.2	(47.2)	47.2	0.0	
				Nonaller	nic Dienes	:: C _d -(C _d)()	H); C _d –(C _d)(C); C-(($C_{\rm d}$) ₂ (H) ₂							
1.3-Butadiene	26.33*	26.48	-0.15		7	66.62	66.6	0		11.01	19.1	0	36.84	36.8	[0]	
zis-1,3-Pentadiene	19.77*	19.73	0.04	11, 12	ŝ	(16.5)	76.5	0.0	A, 12	(22.7)	23.0	-0.3	(47.0)	47.2	-0.2	
rans-1.3-Pentadiene	18.77*	18.73	0.04	11, 12	æ	(76.4)	76.5	-0.1	A, 12	(24.9)	24.4	0.5	(47.7)	47.6	0.1	
1.4-Pentadiene	25.41	25.41	[0]	11	2	p(L.6L)	80.0	-0.3		$(25.2)^{d}$	23.2	2.0	$(47.6)^{d}$	46.7	0.9	
2-Methyl-1,3 butadiene (iso prene)	- 18.09	18.09	[0]	Π	ę	75.2	75.2	[0]	13	(25.2)	24.8	0.4	(48.0)°	47.2	0.8	
^a Starred values used in regi (H) ₂]. ^d C–(C _d),(H) ₂ = C–(C _d) affect of optical isomers whic allenic molecules by relatively	cession coefficie (C)(H) ₂ + [C–($($ h was neglecte r large amounts	nt analysis $C_d(C)(H)_2 - C_d(C)(H)_2 - 1$ in the original	to obtain g - C-(C) ₂ (H ginal refere	roup valt [) ₂]. ^e C _d -(snce: J. K	Les. ^b C-(((Cd)(C) = ilpatrick,	$C_{d}(C)_{2}(H)$ $C_{d-}(C)_{2} + et al., J. J$	= C-(C) ₃ ([Cd-(Cd)(1) Res. Natl.	H) + [C- H) - C _d -(Bur. Std.,	(C _d)(C)(I) (H)]. ⁷ 42, 225 (H) ₂ -C-(C) ₂ The value i 1949). "G	(H) ₂). ¢ C. n API has roup valu	- (C _d)(C) ₃ = 5 been rais 5s preferre	= C-(C), - ed by <i>R</i> In d, as quote	F [C-(C _d) 2 to take i d values d	(C)(H) ₂ -C-(into account iffer from ot	C)r- the

and heat capacity, and that of the group C_d -(C_d)(C) to heaf capacity, had to be estimated as indicated in the footnotes ot Table III. These estimates lead to heat capacity values which are somewhat at variance with the estimates in the API tables.

C. ALKYNES (C_t -(H); C_t -(C); C-(C_t)(C)(H)₂; $C_{-}(C_{t})(C)_{2}(H); C_{t}_{-}(C_{d}); C_{d}_{-}(C_{t})(H))$

The contributions of the first four groups mentioned above to heat of formation can be obtained from the data in the API tables in the usual manner. The entropy and heat capacity contributions of all but $C_{-}(C_t)(C)_2(H)$ can also be ascertained from measured values, the contributions of this group being determined as noted in Table IV.14

From some observed values of heats of formation of some mixed "yne-ene" compounds, based on solution heats of hydrogenation, one can ascertain the heat of formation contribution of the sum of groups $C_t-(C_d) + C_d-(C_t)(H)$. We have arbitrarily assigned to the C_d -(C_t)(H) group the same values as the C_d -(C_d)(H) group, and thus obtained values for the C_t -(C_d) group.

D. AROMATICS (TABLE V)

Values were obtained in a straightforward manner from those values so marked. Where group values were estimated, the nature of the estimation is noted.

There seems to be very little in the way of measured values for this class of compounds. The contributions of the sum of the C_B -(C_d) and C_d -(C_B)(H) groups can be obtained from styrene itself, and this value allows the estimation of the properties of the other vinylbenzenes listed, with the exception of α -methylstyrene. For convenience, the C_d-(C_B)(H) group is arbitrarily assigned the values of the C_d -(C_d)(H) group. The measured value of the heat of formation of α -methylstyrene yields values for the C_d -(C_B)(C) group contribution. The entropy and heat capacity contributions of this group are estimated as equal to those of the C_d -(C_d)(C) group.

The values of entropy and heat capacity contributions of the sum $[C_B-(C_t) + C_t-(C_B)]$ are estimated from phenylacetylene, and the C_B -(C_t) group is assigned the values of the C_B -(C_d) group. The heat of formation is estimated as shown in Table V. 15-19

E. POLYAROMATICS (TABLE VI20-22)

The measured values for biphenyl yield the contributions of the group C_B -(C_B) in a straightforward manner. This group seems to reproduce the heats of naphthalenic compounds

⁽¹⁴⁾ H. A. Skinner and A. Snelson, Trans. Faraday Soc., 55, 404 (1959). (15) E. J. Prosen, et al., J. Res. Natl. Bur. Std., 36, 455 (1946). This paper is the source of all the API values, as well.

⁽¹⁶⁾ S. H. Hastings and D. E. Nicholson, J. Phys. Chem., 61, 730 (1957). (17) D. W. Scott, et al., ibid., 66, 911 (1962).

⁽¹⁸⁾ D. J. Coleman and G. Pilcher, Trans. Faraday Soc., 62, 821 (1966).

⁽¹⁹⁾ J. C. Evans and R. A. Nyquist, Spectrochim. Acta, 16, 918 (1960).

⁽²⁰⁾ D. M. Speros and F. D. Rossini, J. Phys. Chem., 64, 1723 (1960). (21) J. A. Katon and E. R. Lippincott, Spectrochim. Acta, 15, 627 (1959).

⁽²²⁾ C. J. Eagon, J. Chem. Eng. Data, 8, 532 (1963).

						Table	١Va									
			(C'-(I	J); C-	(C); C-(C	Alky (C)(H) ₂ ; C-	nes -(Ci)(C) ₂ (H	I); C _t -(C _d): C ^a (C()(H))						
	Obsd	Estd	۵	Ref	ø	Obsd S°-	Estd	Δ	Ref	$\int Obsd C_p^{\circ}$	Estd	۵	Obsd Co	^m Estd	Þ	Ref
Ethyne	54.19*	53.86	0.33		2	48.00*	48.0	0.0		10.53	10.54	0.0	14.93	14.9	0.0	
Propyne	44.32*	44.40	-0.08		e	59.30*	59.3	0.0		14.55	14.6	0.0	25.14	25.1	0.0	
But-1-yne	39.48*	39.67	-0.19		e	69.51*	9.69	-0.1		19.54	19.5	0.0	35.95	36.0	0.0	
But-2-yne	34.97*	34.94	0.03		$3^{2} \times 2$	67.71*	67.8	-0.1		18.70	18.6	0.0	35.14	35.2	-0.1	
Pent-1-yne	34.50*	34.72	-0.22		ę	(19.10)	79.0	0.1		(25.65)	25.0	0.7	(47.1)	47.0	0.1	
Pent-2-yne	30.80*	30.21	0.59		32	(06.90)	79.5	-0.2		(23.69)	23.6	0.1	(45.9)	46.1	-0.2	
3-Methylbut-1-yne	32.60*	32.60	[0]		32	(76.23)	76.2	0.0		(25.1)	24.8	0.3	(47,4)	47.2	0.2	
Hexa-1.5-divne (diproparevl)	99.44*	99.50	-0.06	14°	I) }			5	
ric-Pent-3-en-1-vne	60 60*	61 64	-1 04	140												
trans-Pent-3-en-1-vne	÷00 03	60.64	0.28	140												
rie-Dec-3-en-1-vne	36.75	36 81	95 0-	140												
trans-Dec-3-en-1-vne	36 95	10.00	10	14°												
^a Starred values used in regr tudies in colution which are o	ession coefficie	nt analysis or 2 kcal/m	to obtain g	roup v	alues. ⁵ C-(C ₁)(C) ₂ (H)	= C-(C) [*] ()	H) + [C-((C)(C)	(H) ₂ -C-(C) ₂ (H)a]. ° The	se are ca	Iculated from	n heats of	hydrogen	ation
						Tablı Aroms	e V atics									
	$Obsd$ $\Delta H_{\rm f}$	Estd	۵	Rey	Ρ	Obsd S ² -	Estd	Δ	Rej	Obsd Cp ³	Estd	۵	$Obsd$ $C_{\rm b}^{\circ}$	¹⁰ Estd	Þ	Rfe
		Alkvlhe	nzenes: (C _n	E E	Cn-(C): C-	(Ca)(C)(H):	C-(C_)(C),(H): C+	C ^a)(C)	artho Con	rection)					
Benzene	19.82	19.79	0.03		3 X 2 ²	(-B)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)	64.26	0.1		19.65*	19.42	0.2	45.06*	45.21	-0.2	
Toluene	11.95*	11.92	0.03		3 X 2	76.64*	76.81	-0.2	17	24.94*	25.04	- 0-	56.61	55.66	0.1	17
Ethylbenzene	7.12*	7.06	0.06		3 X 2	86.15*	86.15	[0]		30.88*	30.88	[0]	67.15*	67.15	0	i
Isobutylbenzene	-5.15	-4.92	-0.23	15	3ª X 2		102.33		:		41.61	Ξ :		89.48	5 :	
1,2-Dimethylbenzene	4.54*	4.63	-0.09		32 X 2	84.34*	84.21	0.1	16	32.10*	31.79	0.3	66.50*	66.98	-0.5	: 91
1,3-Dimethylbenzene	4.12*	4.06	0.06		$3^2 \times 2$	85.49*	85.82	-0.3		30.66*	30.66	0.0	66.41*	66.10	0.3	
1,4-Dimethylbenzene	4.29*	4.06	0.23		$3^{2} \times 2$	84.23*	84.45	-0.2		30.49*	30.66	-0.2	66.14*	66.10	0.0	
n-Propylbenzene	1.87*	2.11	-0.24		3×2	(95.74)	95.59	0.2		(36.99)	36.48	0.5	(78.30)	78.22	0.1	
n-Butylbenzene	-3.30*	-2.84	-0.46		3×2	(105.04)	105.01	0.0		(42.09)	41.98	0.1	(89.37)	89.29	0.1	
1-Propylbenzene	0.94*	0.86	0.08		3² X 2	(92.87) ^a	92.91	0.0		(36.47)ª	36.11	0.4	(18.6)	78.41	0.2	
sec-Butylbenzene	-4.17	-4.09	-0.08	15	3ª X 2	a .	102.33	:	:	a .	41.61	:	a	89.48	:	:
f-Butylbenzene	-5.42	-5.42	[0]	15	34 X 2	ور ۲۹ مربار مرد ۲۹	95.93		:	9	42.13	 	4 · · ·	90.89	:	:
I-Metuyi-2-etuyioenzene	. K7'N	C1.V-	70.76		۰,	(24.04)	54.20	c.v		(+7.10)	20.15	ر. ک	(1.8.1)	18.41	+.0-	

1. Methul_3. ethvlhenzene	-0.46	-0.80	0.34		32	(09.96)	96.54	0.1		(36.59)	36.51	0.1	(17.8)	77.59	0.2	
1-Methyl-4-ethylbenzene	-0.78	-0.80	0.02		$3^{2} \times 2$	(95.34)	95.18	0.2		(36.42)	36.51	-0.1	(17.6)	77.59	0.0	
1.2 3-Trimethylbenzene	-2.29*	-2.66	0.37		3ª X 2	* 67.16	91.60	0.2	16	37.82*	38.53	-0.7	77.56*	78.30	-0.7	16
1.2.4-Trimethylbenzene	-3.33*	-3.24	-0.09		R	94.54*	94.58	0.0	16	36.99*	37.41	-0.4	76.93*	77.41	-0.5	16
1.3.5-Trimethylbenzene	-3.84*	-3.81	-0.03		34 X 2	92.15*	92.65	-0.5		36.10*	36.29	-0.2	76.84*	76.51	0.3	
1.2.3.4-Tetramethylbenzene	-10.02*	-9.96	-0.06		3⁴ × 2	99.55*	00 .66	0.6	16	45.50*	45.28	0.2	89.42*	89.62	-0.2	16
1.2.3.5-Tetramethylbenzene	-10.71*	-10.54	-0.17		$3^4 \times 2$	100.99*	100.62	0.4	16	44.57*	44.16	0.4	88.79*	88.74	0.1	16
1.2.4.5-Tetramethylbenzene	-10.82^{*}	-10.53	-0.29		$3^4 \times 2^2$	100.03*	99.26	0.8	16	44.77*	44.16	0.6	88.41*	88.74	-0.3	16
Pentamethylbenzene	(-17.79)	-17.27	-0.52	16	$3^{6} \times 2$	106.09*	106.40	-0.3	16	\$1.99*	52.03	0.0	101.29*	100.94	0.4	16
Hexamethylbenzene	(-25.26)	-24.00	-1.26	16	$3^7 \times 2^2$	108.12*	108.65	-0.5	16	59.73*	59.90	-0.2	113.51*	113.14	0.4	16
Bibenzyl	32.41	34.30	-1.9	18	22	:	129.90	:	:	:	44.08	•	÷	85.98	:	:
			Unsaturat	ed Ber	izenes: C _{ir} -	(Ca): Ca-(6	Ca)(H): Ca	-(C _n)(C):	C _R -(0	(): C(−(C ₁₁)						
	CC 30	CC 35	[0]		, ,	87 48	87.48	ŝ	1	20 35	29 35	[0]	61.40	61.40	10]	
Styrene	77.00	77.00	2		4	04.70	01.70	Σ				2				
S-Methvistvrene	27.00	27.00	0		3 X 2	(61.7)	89.73	2.0		(34.9)°	35.48	-0.6	(71.8)°	15.21	-0.8	
vis-A-Methylstyrene	(29.00)	28.77	0.23		3×2	(1.16)	91.07	0.6		(34.9)	33.26	0.6	(8.17)	71.61	0.2	
trans-8-Methylstyrene	(28.00)	27.77	0.23		3 X 2	(6.06)	91.07	0.8		(35.1)	34.60	0.5	(72.2)	72.00	0.2	
o-Methylstvrene	(28.30)	27.92	0.38		ŝ	(61.7)	91.24	0.5		(34.9)	36.09	-1.2	(71.8)	71.82	0.0	
<i>m</i> -Methylstyrene	(27.60)	27.35	0.25		ę	(63.1)	92.85	0.3		(34.9)	34.97	-0.1	(71.8)	70.94	0.9	
<i>n</i> -Methylstyrene	(27.40)	27.35	0.05		3×2	(1.16)	91.49	0.2		(34.9)	34.97	-0.1	(21.8)	70.94	0.9	
Ethynylbenzene	, , , , , , , , , , , , , , , , , , ,	(18.31)	:		7	76.88	76.88	[0]	19	27.63	27.63	[0]	55.79	55.79	0	19
$H^{-1}(U) = (H^{-1}(U) = U^{-1}(U)$	יי) ד נכיינטיי)(י	CVH)» — C-	(C) (H)] ⁶	C−(C")(C) ² = C-	(C), + [C-	(C ₁) (C)(H), – C-(C	(H)*(]. ∘ C₁–(Cʰ)(C	() = C(C	(D), 4 (C	$f_{1}^{-}(C_{B}) = 0$	(C_i).		
いどくてく ー (TT)ぶく)(B)てい	ショントレート		・「スイーノス())	ジ ン			「シンシン」のシン	5 1 2	12//2/					}		

quite well, but begins to fall off with larger compounds of this class. While the value for anthracene is not bad, it is clear from the value of phenanthrene that this type of pseudo group additivity does not take into account some important interactions. Note that biphenyl is not planar in the gas phase so that it may be lacking in some conjugation energy. The value shown for $\Delta H_t^{\circ}(C_B-C_B)$ was an average over biphenyl and naphthalenes.

Entropy and heat capacity can be treated with a ring correction, as for the cycloalkanes and alkenes treated in the next section.

F. CYCLIC ALKANES AND ALKENES

Our approach to cyclic compounds has been to use groups from the open-chain compounds and a ring correction. In the case of heats of formation, this correction is what is often defined as the strain energy. Since the available data are sparse, all ring strains were evaluated from the unsubstituted rings where data for these were available. (For the cyclohexanes, enough data are available to allow us to relax this rule.) The transferability of this strain to substituted ring compounds is generally attested to by the data of Table VII.²³⁻⁶¹ It will be noticed that the deviations are somewhat larger than previously encountered. This is due to the absence of gas-phase data, the use of the unsubstituted ring as standard, and perhaps small differences in the strain energies of various substituted small rings.

The entropy and heat capacity correction terms are also seen to be transferable. Again, an examination of the deviations will show that choice of the unsubstituted ring as the standard often throws the values of the substituted compounds off by a small amount.

The magnitude of the entropy corrections is not surprising when one realizes that a disproportionate amount of the entropy is tied up in the C-(H)₃(C) and C_d-(H)₂ groups of open-chain molecules.

- (29) M. A. Dolliver, et al., J. Am. Chem. Soc., 59, 831 (1937).
- (30) J. E. Bloor and S. Gartside, Nature, 184, 1313 (1959).

(32) G. B. Kistiakowsky, et al., ibid., 58, 146 (1936).

(33) R. B. Turner, private communication ($\Delta H_{\rm H_2}$ at 25°, acetic acid, and is 0.3 kcal more negative than for 1,3-cyclohexadiene).

- (34) K. A. Kobe and R. E. Pennington, Petrol. Refiner, 29, 93 (1950).
- (35) K. B. Wiberg and W. J. Batley, J. Am. Chem. Soc., 82, 6375 (1960).
- (36) G. W. Rathyens, Jr., et al., ibid., 75, 5634 (1953).
- (37) A. Danti, J. Chem. Phys., 27, 1227 (1957).
- (38) D. W. Scott et al., J. Phys. Chem., 64, 906 (1960).
- (39) J. B. Conn, et al., J. Am. Chem. Soc., 61, 1868 (1939).
- (40) J. B. Conn, et al., ibid., 60, 440 (1938).
 - (41) R. B. Turner and W. R. Meeder, ibid., 79, 4133 (1957).
 - (42) R. B. Turner, et al., ibid., 79, 4127 (1957).
 - (43) D. M. Speros and F. D. Rossini, J. Phys. Chem., 64, 1723 (1960).
 - (44) H. Leroux, Compt. Rend., 151, 384 (1910).
 - (45) C. C. Browne and F. D. Rossini, J. Phys. Chem., 64, 927 (1960).
 - (46) J. M. Fraser and F. J. Prosen, J. Res. Natl. Bur. Std., 54, 143 (1955).
 - (47) H. L. Finke, et al., J. Am. Chem. Soc., 78, 5489 (1956).
 - (48) D. W. Scott, et al., ibid., 72, 4664 (1950).
 - (49) R. Srinivasan, et al., J. Phys. Chem., 69, 1775 (1965).
 - (50) R. H. Boyd, et al., Abstracts, 152nd National Meeting of the American Chemical Society, New York, N. Y., Sept 1966, No. V164.
 - (51) R. B. Williams, J. Am. Chem. Soc., 64, 1395 (1942).

⁽²³⁾ J. W. Knowlton and F. D. Rossini, J. Res. Natl. Bur. Std., 43, 113 (1949).

⁽²⁴⁾ K. B. Wiberg, et al., J. Am. Chem. Soc., 84, 3980 (1962).

⁽²⁵⁾ S. Kaarsemaker and J. Coops, Rec. Trav. Chim., 71, 261 (1952).

⁽²⁶⁾ R. B. Turner, et al., Tetrahedron Letters, 15, 997 (1965).

⁽²⁷⁾ R. B. Turner and R. H. Garner, J. Am. Chem. Soc., 80, 1424 (1958).

⁽²⁸⁾ R. B. Turner, Kekule Symposium, IUPAC, Butterworth & Co., Ltd., London, 1959.

⁽³¹⁾ G. B. Kistiakowsky, et al., J. Am. Chem. Soc., 58, 137 (1936).

							Table	N									
	,HV					,	-S-	ſ					,	: ن			
	Obsd	Estd	٥	Ref		ь	Obsd	Estd	۷	Ref	Obsd	Estd	Δ	Obsd	Estd	۵	Ref
Biphenyl	43.52	42.92	0.6(18		5	3.91	93.91	[0]	21	39.05	39.05	[0]	86.92	86.92	0	51
Naphthalene	36.12	36.32	-0.2(18,20	0	80	0.5ª	80.5	[0]	22							
1-Methylnaphthalene	27.93	28.43	-0.50	50													
2-Methylnaphthalene	27.75	28.43	-0.6	20													
Anthracene	55.17	52.84	2.67	18													
Phenanthrene	49.46	52.84	3.38	18													
a Naphthalenic ring correction =	= 8.1 gibbs/	mole.															
							Table	IIA									
					Z	onaroma	tic Rings:]	Ring Corre	ctions								
	HA	([°])					ŝ				نْ	00		ڻ، ا			
	Obsd	Estd	٩	Ref	u	ø	Obsd	Estd	Δ	Ref	Ohsd	Estd	۷	Obsd	Estd	Ā	Ref
Cyclopropane	12.74	12.7	[0]	23	3	× 2	56.8	56.8	[0]	34	13.44	13.44	[0]	31.44	31.44	[0]	3
Methylenecyclopropane	48.0	48.0	õ	e													
Cyclopropene	66.6	66.6	0	54		2	58.38	58.38	0	35							
1-Methylcyclopropene	58.2	58.3 -	-0.1	e													
Cyclobutane	16.4	6.4	0	25		2ª	63.43	63.43	0	36	17.37	17.37	0	42.42	42.42	[0]	36
Cyclobutene	37.5	37.5	0.0	e		2	62.98	62.98	0	37	16.03	16.03	0]	32.26	32.26	[0]	37
Methylcyclobutane	:	-0.6	:	:													
1,2-Dimethylcyclobutene	20.8	21.7	6.0-	fa													
1-Methylcyclobutene	29.1	29.1	ē	274.4													
1-Methyl-3-methylenecyclobutene	48.3	48.6	-0.3	28 b													
Methylenecyclobutane	30.0	28.0	2.0	27													
1,3-Dimethylenecyclobutane	53.3	51.4	1.9	28"													
Cyclopentane	-18.46	-18.46	<u></u>			10	70.0	70.0	0		19.98	19.98	0	52.44	52.44	0	
Cyclopentene	8.56	8.56	0	29		7	69.23	69.23	0		18.08	18.08	0	45.78	45.78	0	
Cyclopentadiene	32.44	32.44	0	30													
Methylcyclopentane	-25.50	-25.49	-0.0			ŝ	81.22	81.34	-0.1	38	26.43	25.21	1.2	63.8	63.7	-0.1	38
1-Methylcyclopentene	-1.5	-0.29	-1.2	27°		e	(78.2)	78.1	0.1		(24.3)	24.2	-0.1	(57.0)	57.1	-0.1	
1-Ethylcyclopentene	-5.8	-5.05	-0.8	27ª													
Methylenecyclopentane	2.4	3.32	6.0	274.0													
Ethylidenecyclopentane	-4.5	-4.13	-0.4	274.0													
1,1-Dimethylcyclopentana	-33.05	-33.17	0.1		ñ	*×2	(85.87)	85.18	0.69		(32.16)	31.23	0.93	(76.18)	76.20	0.0	
cis-1,2-Dimethylcyclopentane	-30.96	-31.51	0.6			÷.	(87.51)	88.14	-0.63		(32.34)	30.44	1.9	74.98	74.94	1.0	
trans-1,2-Dimethylcyclopentane	-32.67	-32.52	-0.2		3	1×2	(87.67)	88.14	-0.47		(32.44)	30.44	2.0	(75.84)	74.94	0.9	
cis-1,3-Dimethylcyclopentane	-32.47	-32.52	0.6			3	87.54	88.14	-0.6	38	32.72	30.44	2.3	75.68	74.94	0.8	38

Table VI

286

<i>trans</i> -1,3-Dimethylcyclopentane Cyclohexane Cyclohexane 1,3-Cyclohexadiene	-31.93 -29.43 -0.84 26.0	-32.52 -29.73 -0.84 26.0	0.1 [0] [0]	31 32	7	3² × 2 3 × 2 2	(87.54) 71.28 74.27	88.14 71.58 74.27	-0.6 -0.3 [0]		(32.72) 25.58 25.28	30.44 26.58 25.28	2.3 -1.0 [0]	(75.68) 66.76 59.49	74.94 67.26 59.49	0.8 -0.5 [0]	
Methylcyclohexane Ethylcyclohexane 1,1-Dimethylcyclohexane	-36.99 -41.05 -43.26		-0.2 -0.1 -0.5	2			82.06 91.44 87.24	81.86 91.28 87.12	0.2 0.3 0.1		32.51 38.23 (37.2)	31.81 37.31 37.0	0.7 0.9 0.2	78.74 90.1 (90.7)	78.5 89.6 91.0	0.2 0.5	
cis-1,2-Dimethylcyclohexane	-41.15	-41.39	0.2		2 19	32 32 > 2	89.51 88 65	89.96	-0.5		(37.7)	37.0	0.7	(100)	8.98	0.3	
cis-1,3-Dimethylcyclohexane	-44.16	-43.79	-0.4		4	32 4	88.54	88.60 88	-0.1		(37.9)	37.0	1.9	(5.06) (90.5)	8.68 89.8	0.7	
trans-1,3-Dimethylcyclohexane	-42.20	-42.19	0.0		7	32	89.92	89.96	0.0		(37.9)	37.0	0.9	(8.68)	8.68	0.0	
cis-1,4-Dimethylcyclohexane	-42.22	-42.19	0.0			32	88.54	88.60	-0.1		(37.9)	37.0	0.9	(86.8)	89.8	0.0	
trans-1,4-Dimetnylcyclohexane 1-Methylcyclohexene	-44.12	- 43.79	 	070		3 ^z × 2	61.18	81.24	-0.1		(38.0)	37.0	1.0	(9.06)	89.8	0.8	
1-Ethylcyclohexene	-15.0	-14.5	-0.5	27ª													
Methylenecyclohexane	-7.2	-8.1	0.9	27a.c													
Ethylidenecyclohexane	-13.7	-15.5	1.8	27ª.c													
Cycloheptane	-28.3	-28.3	ē	25			81.8	81.8	0	47							
Cycloheptene	-1.8	-1.8	0	<u>66</u>													
1,3-Cycloheptadiene	22.9	22.9	0	66			1	ŀ	5	ļ							
1,3,5-Cycloheptatriene	44.5	44.5	<u> </u>	40 1 2 2	-		75.4	75.4	0	47							
I-Methylcycloheptene	- IU.S	-10.7	0.2	2.14.0													
Methylehecycloneptane Cyclonetane	7.0-	- 0	<u>.</u> 1	25	7 3		7 7	R7 7	U	47							
cyclocetene cis-Cyclooctene	-6.2	-6.2	<u>5</u> 5	3 E	4				2	F							
trans-Cyclooctene	3.1	3.1	20	4													
1,3,5-Cyclooctatriene	43.7	43.7	0	42ª													
Cyclooctatetraene	71.3	71.3	5	42"													
Cyclononane	-31.8	-31.8	[0]	25													
cis-Cyclononene	-7.2	-7.2	0]	41 •													
trans-Cyclononene	-4.3	-4.3	[0]	41ª													
trans-Decalin	-43.6	-42.8	8.0 -	4 3													
cis-Decalin	-40.4	-41.2	». o	43													
LettallD Urdeindene	0.7	0.0	0.4 C	‡ ?													
trans-Hydrindane	-31.5	-31.4	-0-1	3 2													
Spiropentane	44.23	44.23	[0]	46	2²		67.46	67.46	0	48	21.19	21.19	0	47.91	47.91	[0]	47
Bicyclo[1.1.0]butane	51.9	53.3	-1.4	e	7		62.49	52.49	0	69				I		E	
1,3-Dimethylcyclo[1.1.0]butane	39.3	37.9	-1.4	26													
Bicyclo[2.1.0]pentane	37.6	37.6	0	28ª													
Bicyclo[3.1.0]hexane	9.07	9.07	0	50													
Bicyclo[4.1.0]hexane	0.32	0.32	0	49													
Bicyclo[5.1.0]octane	-3.87	-3.87	0	20													
Bicyclo[6.1.0]nonane	-7.42	-7.42	0	20													
1,4-Dihydronaphthalene	33.3	33.3	0	51													
1,2-Dihydronaphthalene	30.3	30.6	0.3	51													
^e 1.0 kcal/mole added to heats cycloalkane. ^d Work done in 1910.	derived fro • Added in	m measure proof: K.	ments i B. Wib	in solut erg an	ion. ^b I R. A	Depends 1	ipon the gr	oup value em. Soc.,	of the c 90, 3395	correspo (1968).	nding cyclo / Added in	alkane. ^e U proof: R.	Ising the 1 B. Tuiner	ing correcti t, et al., ibic	on of the c (, 90 , 4315	orrespond (1968).	ling

	•			•	Ľ	able VIII	• .				•	:		•		
	:			•	· Alcohe	ls and Phe	aols	-				•	•		•	•
Compound ^a	Obsd	Estd	Φ	Ref	n, oʻ	Obsd	Estd	٩	Ref	Obsd Co	Estd	۵	Obsd Cp	Estd	Φ	Ref
Methanol,* CH ₃ OH	-48.0	-48.0	[0.0]	54	Э	57.3	57.3	[0.0]	55	10.5	10.5	[0.0]	19.0	19.0	[0.0]	55
Ethanol, C ₂ H ₆ OH	-56.2	-56.5	+0.3	56	ŝ	67.6	67.6	-0.1	56	15.7	15.5	0.2	30.3	30.1	0.2	56
1-Propanol, C ₃ H ₇ OH	-61.3	-61.5	+0.2	57	÷	76.9	77.0	-0.1	57	20.9	21.0	-0.1	41.0	41.2	-0.2	58
1-Butanol, C4H,OH	-65.7	-66.4	+0.7	57	ę	86.5	86.4	0.1	57							
1-Pentanol, C ₆ H _{II} OH	-71.9	-71.4	-0.5	59	3	96.1	95.8	0.3	ķ							
1-Hexanol, C ₆ H ₁₀ OH	-76.8	-76.3	-0.5	59												
1-Heptanol, C ₇ H ₁₆ OH	-81.7	-81.3	-0.4	59												
1-Octanol, C _s H _{ir} OH	-86.6	-86.2	-0.4	59												
1-Nonanol, C ₉ H ₁₀ OH	-91.5	-91.2	-0.3	59												
1-Decanol, C ₁₀ H ₂₁ OH	-96.4	-96.1	-0.3	59												
2-Methyl-1-propanol, (CH ₃) ² CHCH ₂ OH	-61.9	-67.7^{b}	-0.2	0 9 (3²	83.6	83.8	-0.2	k							
Allyl alcohol,* CH ₂ CHCH ₂ OH	-29.6	-29.6	[0.0]	61												
Benzyl alcohol, * C ₆ H ₆ CH ₂ OH	-22.5	-22.5	0.0	3	1	1	·		;							
Ethylene glycol, C ₂ H ₄ (OH) ₂	-92.4	-92.8	+0.4	63	7	77.3	4.11	-0.1	5					•		ţ
2-Propanol (CH ₃) ₂ CHOH	-65.2	-65.1	-0.1	65	32	74.1	74.5	-0.4	65	21.3	21.5	-0.2	42.1	41.8	0.3	65 5
2-Butanol (CH ₃ CH ₂)(CH ₃)CHOH	-69.8	- 70.1	+0.3	99	2, 3ª	85.8	85.3/	0.5	99	27.2	27.0	+0.2	52.7	52.9	-0.2	66
Cyclopentanol, (CH ₂) ₄ CHOH	- 58.04	-58.4	+0.4	5												
Cyclonexanol, (CH ₂),CHOH	- 68.5	1.69-	+1.2	6	ė			2	ŝ		1	2			5	Ś
2-Methyl-2-propanol,* (CH ₃) ₃ COH	-74.7	-74.7	[0.0]	88	34	78.0	78.0	0.0]	68	27.2	27.2	0.0]	53.3	53.3	[0.0]	88
Methanediol, * CH ₂ (OH) ₂	-93.5	-93.5	[0.0]	X (
Ethane-1,1-diol,* CH ₂ CH(OH) ₂	-103.1	-103.1	0.0	69					i			•	1			ì
Phenol, C ₆ H ₆ OH	-23.1	-23.2	0.1	02	2	75.1	75.2	-0.1	11	24.8	24.2	0.6	50.7	50.6	0.1	5
o-Cresol, CH ₂ C ₄ H ₂ OH	-30.7	-30.5	-0.2	8	m (85.5	83.9	1.6	12	31.2	31.2	0.0	61.6 ⁶	62.0	4 .0-	11
m-Cresol, CH ₃ C ₆ H ₄ OH	-31.6	-31.1	-0.5	20	m ,	85.3	85.5	-0.2	12	29.8	30.1	-0.3	61.3	61.1	0.2	21
p-Cresol, CH ₃ C ₆ H ₄ OH	-30.0	-31.1	1.1	22	2 X 3	83.1	84.1	-1.0	72	29.8	30.1	-0.3	61.1	61.1	0.0	77
2,3-Xylenol, (CH ₃) ² C ₆ H ₃ OH	-37.6	-37.81	0.2	02												
2,4-Xylenol, (CH ₃) ₂ C ₆ H ₃ OH	- 39.0	-38.5	-0.5	20												
2,5-Xylenol, (CH ₁) ₂ C ₆ H ₁ OH	38.7	-38.4	-0.3	70												
2,6-Xylenol, (CH ₃) ₂ C ₆ H ₃ OH	-38.7	-37.8	-0.9	20												
3,4-Xylenol, (CH ₃) ₂ C ₆ H ₅ OH	- 37.4	- 38.4 ⁱ	1.0	21												
3,5-Xylenol, (CH ₃) ₂ C ₆ H ₃ OH	-38.6	-39.0	0.4	02												
^a Compounds marked with an asterisk v 0.8. \circ Using a calculated value of $\Delta H_{vap} = -$ 1.6 and $\Delta H_{vap} = 16$. ^A Using $\Delta H_{aquation} =$ 1819(1968).	vere the sole s +16.3. ^{<i>d</i>} Using 1.6 and ΔH_v	cource for de $g a calculate$ $a_p = 16.3 (c$	termining 1 value of <i>f</i> . ethylene	a parti ∆H _{vap} = s glycol	cular gro = 13.8. • 1). ⁱ One o	up value.] Jsing a cale <i>wtho</i> corre	Che data fc culated val ction. <i>i</i> Tw	it these c ue of ΔH o <i>ortho</i> (ompour (vap = 1 correctio	ids necessai 5. 7 Includ ons. * Adde	rily fit the ling R ln (ed in proo	group p ? for opt f: J. F. (redictions. ical activit Connsell, e	^b One gau iy. ^o Using t al., J. Cl	che corre $\Delta H_{\rm squat}$ hem. Soc	ction $a = A$, A ,
						Table IX										
						Ethersa										
Compound	Obsd	AHr [°] Estd	4	7	lef	ء م	sd S°	td	R	obsd	Cp [°] 300 Estd	<	Obsd	e suo Estd	۵	Ref
Dimethyl ether. CH _s OCH _s	-44.0	-43.2	-0.		3 2	× 3 ² 63	7 63	7* [0]	10	1 15.8	15.8*	[0.0]	30.4*	30.4*	[0.0]	74
Methyl ethyl ether, CH,OC,Hs Diethyl ether C.H.OC,H.	-51.7	-51.7	0.0	•			:		7		r					
		1.00	5		2											

	81 81	-0.8 +0.1	- 29.2 - 46.2	30.0 46.1	Dimethyl peroxide, CH ₃ OOCH ₃ Diethvl neroxide. C,H,OOC,H,
$n, \sigma \xrightarrow{Obsd} S^{\circ} \underbrace{Estd}_{Estd} \Delta Ref \underbrace{Obsd}_{C_{\rho} \text{ sm}} \underbrace{C_{\rho} \text{ sm}}_{Estd} \Delta \underbrace{Obsd}_{Dsd} \underbrace{C_{\rho} \text{ sm}}_{Estd} \Delta Ref$	Ref	Δ	H [°] Estd	Obsd	Compound
des and Hydroperoxides	Peroxid				
Table X					
n gauche corrections of 0.3. ^d Two oxygen plus two-alkyl gauche corrections. ^e Three oxygen gauche correcting calculated $\Delta H_{vap} = 12.3$. ⁱ From a heat of combustion of the solid plus heat of fusion of 4 and heat of oppopyl ether. ^k From a calculated heat of formation of -64.7 for methyl sec-butyl ether and includes one	vo oxygen 1.6. ^a Usin ethyl isop	of 0.3. ° Tv $\Delta H_{\rm vap} = 1$ -68.5 for	te correction og calculated formation of	xygen gauch train. ^a Usir ted heat of 1	^a An asterisk denotes unique group. ^b One (tions. ^f Four oxygen gauche corrections plus s vaporization of 15.2 (ref 79). ⁱ From a calcula cis correction. ¹ Includes four oxygen gauche.
	80	-0.3	-102.3'	-120.6	2,2-Diethoxypropane, (CH ₃) ₂ C(OC ₂ H) ₁₂
	61	0.1	-40.0	a - 39.94	2-Methoxy-n-but-2-ene, CH ₃ OC(CH ₃)CHCH
	61	0.0	-43.4	-43.4	2-Ethoxyprop-1-ene, C2H6OC(CH2)CH2
	75	-0.2	-33.3	-33.5	Ethyl vinyl ether, C ₂ H ₆ OCHCH ₂
	75	0.0]	-3.0	-3.0	Divinyl ether,* CH ₂ CHOCHCH ₂
	78	+0.1	-25.5	-25.4%	Ethyl phenyl ether, C ₂ H ₅ OC ₄ H ₅
	78	0.0	-18.0	-18.00	Methyl phenyl ether, CH ₃ OC ₆ H ₆
	11	[0.0]	-87.21	-87.2	Di-t-butyl ether, * (CH ₃) _s COC(CH ₃),
	11	+0.6	-86.2	-85.6	Isopropyl t-butyl ether, (CH ₃) ₂ CHOC(CH ₃) ₂
	0 1 1	-0.7	- 69.3	- 70.0	Methyl t-butyl ether, CH2OC(CH2)
	9/	+0.2	- 80.0	8.61- 0.70	Di-n-butyl ether, C4H,OC4H, Di zzz huitul athar /CU CU CU/CU >>>>>>>>>>>>>>>>>>>>>>>>>>
	76	+0.7	-76.8	-76.1	Diisopropyl ether, (CH ₃) ₂ CHOCH(CH ₃) ₂
	76	+0.1	-70.1	-70.0	Di-n-propyl ether, C ₃ H ₇ OC ₃ H ₇
	73	-0.2	-60.0^{b}	-60.2	Methyl propyl ether, CH ₃ OCH(CH ₃) ₂
	73	-0.1	-56.7	-56.8	Methyl <i>n</i> -propyl ether, CH ₃ OC ₃ H ₇

							1									
	IV III	H°				j,				ر			ů			
Compound	Obsd	Estd	Δ	Ref	п, с	Obsd	Estd	۷	Ref	Obsd	Estd	۵	Obsd	Estd	۵	Ref
Dimethyl peroxide, CH _a OOCH _a	- 30.0	-29.2	-0.8	81												
Diethyl peroxide, C ₂ H ₆ OOC ₂ H ₆	-46.1	-46.2	+0.1	81												
Di-t-butyl peroxide, (CH ₃),COOC(CH ₃),	-81.5	-81.6^{a}	+0.1	81												
Hydrogen peroxide, ^e HOOH	-32.5	-32.5	[0.0]	82	2,2	55.7	55.7	[0.0]	82	10.3	10.2	0.1	14.3	14.4	-0.1	82
t-Butyl hydroperoxide, (CH ₃) ₃ COOH	-52.1	-57.1^{b}	+5.0	83												
Hexyl-1 hydroperoxide	-58.6	-58.4	-0.2	84,85												
Hexyl-2 hydroperoxide	-61.1	-62.9	+1.8	84, 85												
Hexyl-3 hydroperoxide	- 59.9	-62.9	+3.0	84,85												
Heptyl-1 hydroperoxide	-66.0	-63.4	-2.6	84,85												
Heptyl-2 hydroperoxide	66.8	-67.9	+1.1	84, 85												
Heptyl-3 hydroperoxide	-66.9	-61.9	+1.0	84,85												
Heptyl-4 hydroperoxide	-63.8	-61.9	+4.1	84,85												
Cyclohexyl hydroperoxide	-52.3	-52.8	+0.5	84, 85												
Methyl cyclohexyl hydroperoxide	-63.0	-59.8	-3.2	84,85												
Acetyl peroxide, (CH ₄ COO) ₂	-119.0	-129.0	+10.0	87												
Propionyl peroxide, (C ₂ H ₆ COO) ₂	-138.0	-139.0	+1.0	87												
Butyryl peroxide, (C ₃ H ₇ COO) ₂	-150.0	- 149.0	-1.0	87												

							Ú	clics									
Compound ⁴	0	$\overset{\Delta H_{f}^{\circ}}{bsd}$	Estd	Δ	Ref	n, a	Obsd S	Estd	Δ	Ref	Obsd	300 Estd	Δ	$Obsd C_{\rm b}^{\rm C}$	800 Estd	۵	Ref
Ethylene oxide $\overline{\zeta}$	- 2	12.6	-13.1	0.5	88	5	58.0	58.4	-0.4	68	11.5	11.4	0.1	24.6	24.3	0.3	8
Propylene oxide ∇_0^{Γ}	- 	22.2	-21.7	-0.5	16	2,3	68.5	68.6	-0.1	16	17.4	17.4	0.0	35.7	36.0	-0.3	16
Trimethylene oxide* $<_{0}$		19.3	-19.3	[0.0]	88	7	63.4	63.4	[0.0]	92	14.3	14.3	[0.0]	35.1	35.1	[0.0]	92
Tetrahydrofuran*		44.0	44.0	[0.0]	88												
Tetrahydropyran*		-53.5	-53.5	[0.0]	88												
1,3-Dioxane	۱	83.6	83.6	0.0	94												
1,4-Dioxane*	۔ م	76.0	-76.0	[0.0]	93												
<i>sym</i> -Trioxane [*]	· ف_ ک	20.8 -	-120.8	[0.0]	93												
4-Methyl-1,3,dioxane	ا 	90.4	-92.2	+1.8	94												
2-Methyl-1,3,dioxane	۔ ج	.95.4	93.2	-2.2	94												
<i>cis</i> -2,4-Dimethyl-1,3- dioxane		.02.3	- 101.8	-0.5	94												
trans-4,5-Dimethyl-	' ح	.98.1	-98.4	+0.3	94												
5,5-Dimethyl-1,3- ∠ dioxane	⊤ ∽	00.6	•7.7€	-2.9	94												
2-cis,4-trans,6-tri- methyl-1,3-dioxane		- 106.1	-109.34	+3.2	94												
Furan*		-8.3	-8.3	[0.0]	95												
Dihydropyran	- 	-29.9	-29.9	[0.0]	7 9												
Cyclopentanone*	·	45.5	-45.5	[0.0]	67, 96												

290

Table XI

Cyclohexanone*	Ļ	-53.1	-53.1	[0.0]	96, 67
Succinic anhydride*	Ç,	-122.6	-122.6	[0.0]	76
Glutaric anhydride*	Ś	-131.3	-131.3	[0.0]	76
Maleic anhydride*		-97.9	6.79-	[0.0]	98

• An asterisk denotes unique group. ^b Including one hydrocarbon gauche correction. ^c Including two oxygen gauche corrections. ^d Including one oxygen and one hydrocarbon gauche corrections.

						Table XI	П									
					Aldeh	ydes and K	cetones									
	N	<u> </u>					0			Ċ l				000		
$Compound^a$	Obsd	Estd	Φ	Rej	a	Obsd	Estd	Φ	Ref	Obsd	Estd	Δ	Obsd	Estd	۷	Ref
Acetaldehyde, CH ₃ CHO	-39.7	-39.7	[0.0]	66	æ	63.2	63.2	[0.0]	66	13.2	13.2	[0.0]	24.2	24.2	[0.0]	99, 100
Propionaldehyde, C ₂ H ₆ CHO	-45.6	-44.7	-0.9	57, 101	÷	73.4	72.7	0.7	101	18.8	19.4	-0.6	35.2	35.3	-0.1	101
Butyraldehyde, C _a H ₇ CHO	-48.9	-49.7	+0.8	57		82.6	82.1	0.5	57							
Heptaldehyde, C ₆ H _{1a} CHO	-62.8	-64.7	+1.9	57												
Acetone,* CH ₃ COCH ₃	-51.7	-51.7	[0.0]	102	2×3^{2}	70.5	70.5	[0.0]	102	18.0	18.0	[0.0]	34.9	34.9	[0.0]	102
Methyl ethyl ketone, CH ₃ CH ₂ COCH ₃	-57.0	-56.7	-0.3	103	32	80.8	81.5	-0.7	103	24.7	24.2	0.5	46.1	46.0	0.1	103
Diethyl ketone	-61.65	-61.56	-0.9	105	2×3^{2}	88.6	89.3	-0.7	в							
Methyl n-propyl ketone	-61.92	-61.56	-0.36	105	32	90.5	90.8	-0.3	в							
Ethyl n-propyl ketone	-66.51	-66.51	0	105												
Methyl <i>n</i> -butyl ketone	-66.96	-66.51	-0.45	105												
Di-n-butyl ketone	-82.57	-81.36	-1.21	105												
Methyl isopropyl ketone	-62.76	-63.07	+0.31	105	33	88.5	88.1	0.4	ø							
Ethyl isopropyl ketone	-68.38	-68.02	-0.36	105												
Diisopropyl ketone	74.40	-74.44	+0.04	105												
Ethyl t-butyl ketone	-75.00	-74.69	+0.31	105												
Isopropyl t-butyl ketone	-80.84	-81.15	+0.31	105												
t-Butyl neopentyl ketone	-94.15	-93.32	-0.83	105												
Di-t-butyl ketone	-82.65	-87.83	+5.18	105												
Crotonaldehyde,* CH ₃ CHCHCHO	-25.5	-25.5	[0.0]	61												
Furfuraldehyde*	-35.4	-34.4^{b}	0.0	104												
Benzaldehyde,* C ₆ H ₅ CHO	-6.0	-6.0	[0.0]	52												
Acetophenone,* C ₆ H ₅ COCH ₃	-22.0	-22.0	[0.0]	85												
Benzophenone,* C ₆ H ₆ COC ₆ H ₆	12.3	12.3	[0.0]	85												
Acetylacetone,* CH ₃ COCH ₂ COCH,	-90.4	-90.4	[0.0]	106												
Diacetyl, CH _a COCOCH _a	-78.6	-78.64	[0.0]	62										,		
 An asterisk denotes unique group.^b Added in proof: R. J. L. Anden, et of 	Heat of var al., J. Chem	orization e 1. <i>Soc.</i> , A,	stimated t 1894 (1968	o be 12 kca 3).	l/mole. ^e]	Heat of va	porization	n estimated	to be 1	l kcal/mo	le. ^d Heat	of vapori	zation esti	mated to	be 9 kcal/	'mole.

					Aride R	Table sters at	XIII M Anhvdi	idee									
								3									
Compor	und ^a	Obsd	Estd	Δ	Rej	` ъ	Obsd S°-	Estd	۷	Ref	Obsd Cp° 10	Estd	, A	Obsd C,	Estd	Ø	Ref
Formic acid, HCOOH		-90.5	-89.9	-0.6	98		59.4	59.4	0.0	86	10.8	10.8	0.0	18.3	18.4	-0.1	8
Acetic acid, CH ₅ COOH		-103.8	-103.8	0.0	107,108	т г	67.5	88.3	8.0- -	107	16.0	16.0	0.0	29.1	29.1	0.0	10/
Fibul cornate, HCOO	CH ₁	-01.0	-01.0	0.0	2 2	n ĥ	04.0	0.00	C.71	25							
Eunyl acetate, CH ₃ CUO	og H ₆	- 103.4	-103.4	0.0	70	Ĵ,	1.06	4.40	7.0	70							
Methyl benzoate, CeHsC	DUCH,	1.1/-	7.11-	C.U-	88												
Ethyl benzoate, CHECC	OC ₂ H ₅	1.6/-	- 19.1	+0.0 12	ŝ												
Vinyl acetate,* CH ₃ COC)CHCH ₂	-72.4	-72.4	[0.0]	52, 61												
Methyl methacrylate,* (CHrC(CH1)COOCH	-79.3	- 79.3	0.0]	19												
Methyl trans-cinnamate,	C,H,CHCHCOOCH,	-49.3	-48.2	-1.1	<u>6</u>												
Diethyl fumarate, (CHC	00C4H)	-168.9^{d}	-170.1	+1.2	<u>6</u>												
Active allignments (CIT		C./CI-	C.1CI-	[v.v]													
^a An asterisk denotes	unique group. ⁴ Using	a calculated	value of	107.9 for	methyl isol	butyrate	e. ° Using	a calcula	ted value	of - 79.) for meth	ıyl β-phe	nylpropio	nate. ⁴ U	sing a cal	culated v	alue
						Table	AIX										
						•											
					Auphatic	and Arc	omatic An	lines									
						ŝ					300°K-			¢	-800°K-		ſ
Compound	Obsd Estd	<	Ref	п, о	Obsd	E	std	Þ	Ref	Obsd	Estd	م ر	0	sd bs	Estd	٥	Ref
					A	iphatic	Amines										
CH ₈ NH ₂	-5.5 -5.3	-0.2	110	ŝ	57.9	3* 57	7.93	0.0]	111	* 10.11	11.91	0.0	27.	43*	22.43	[0.0]	Ш
(CH ₃) ₂ NH	-4.5 -4.8	.0.3	110	32	65.3	65 • 65	5.39	0.0]	112	16.58*	16.58	0.0]	33.	94*	33.94	[0.0]	112
(CH ₃) ₃ N	-5.9 -5.8	-0.1	110	34	69.1	2* 69	9.15	0.0	112	22.05*	22.05	0.0]	l 45.	.62*	45.62	[0.0]	112
C ₂ H ₆ NH ₂	-11.0 -11.9	0.0	110		:	67	L.1			÷	17.56		:	:	33.52		
(C ₂ H ₆) ₂ NH	-17.2 -18.0	0.8	110		:	85	0.0			:	27.08		:	:	56.12		
$(C_2H_b)_3N$	-23.9 -23.2	-0.7	110		:	86	4.8			÷	37.80		:	•	78.89		
n-C ₃ H ₇ NH ₂	-16.7716.8	0 0.03	120														
i-C _i H _i NH ₃	-20.02 -20.6	0.58	120														
n-C.H.NH2	-21.8 -22.8	1.0	113		:	86	9.6			:	28.16		:	:	55.66		
sec-C4H,NH2	[-24.7]* -24.7	0.0]	113 ^b		:	83	6.9			:	28.27		:	:	26.08		
<i>t</i> -C ₄ H ₉ NH ₂	-28.6* -28.6	5 [0.0]	113		:	78	.3			:	28.64		:	:	56.96		
n-C,H,NH-i-C,H,	-40.2 -39.1	-1.1	113°		:	120	0.0			÷	48.81		:	= :	00.59		
					×	romatic	c Amines										
C ₆ H ₆ NH ₂	20.8* 20.8	[0.0]	115	7	76.4	4* 7(5.4	[0.0]	115	26.07	26.07	[0.0]	53.	•64.	53.79*	[0:0]	115
C,H,NHCH,	21.6 20.8	0.8	116														
C ₆ H ₆ N(CH ₄) ₂	22.8 22.0	0.8	116														
C,H,NHC,H,	13.4 14.2	-0.8	117														
C ₆ H ₆ N(C ₇ H ₆) ₂	9.6 10.4	-0.8	117														
(CeHa)2NH	49.9* 49.9	[0.0]	118														
		•	119														
		-l								Anto and	i ulinoso	it the arr	ibero am	atione b	N H ° nevi	t and fore t	avt)
" Each piece of data n	narked with an asterisk	was the sole	source for	determini	ng a partici	ilar gro	up value,	and there	store these	e data ne	cessarity t	וו וחכ ואו	np preux	cuons r	TAN TONE		cyr).

• ΔH_v° revised (see text) to 11.4 kcal/mole.

			Table Imi	e XV nes						
Compound	$\overline{Obsd}^{\Delta I}$	H _f °	Δ	Ref	$\overline{Obsd}^{S^{\circ}}$	 Estd	$\frac{300^{\circ}}{Obsd}C_{\rm p}^{\circ}$	K Estd	$\frac{800}{C_{p}^{\circ}}$	$\int K - C_{\rho}^{\circ} K - C_{\rho}^{\circ} Estd$
CH ₃ CH=N-n-C ₃ H ₇	-1.2	-1.6	0.8	121ª				······		
C ₂ H ₅ CH=NC ₂ H ₅	-0.0	-1.7	1.7	121ª						
$C_2H_5CH=N-n-C_3H_7$	-8.1	-6.6	-1.5	121ª						
$C_2H_5CH=N-i-C_3H_7$	-9.6	-9.6	0.0	121ª						
i-C ₃ HCH ₇ =NC ₂ H ₅	-7.5	-8.6	1.1	121ª						
i-C ₃ H ₇ CH==N-n-C ₄ H ₉	-20.4	-18.5	-1.9	114 ^b						

 ${}^{a}\Delta H_{t}^{\circ}$ for all the others calculated from liquid-phase heats of hydrogenation quoted in ref 121 as follows. To obtain gas-phase heats of hydrogenation 0.5 kcal/mole is added to liquid-phase values to allow for differences in ΔH_{v}° . From these gas-phase heats of hydrogenation and group estimates of ΔH_{t}° for corresponding amines, ΔH_{t}° values for the imines were obtained. ${}^{b}\Delta H_{v}^{\circ}$ revised (see text) to 11.4 kcal/mole.

Additional independent evidence for the size of the alkane gauche interaction is also obtained from the substituted cyclohexanes. For example, ΔH_t° for *cis*-1,4-dimethylcyclohexane is 1.9 kcal/mole greater than for the trans isomer. In Figure 3 we see that in the *trans* isomer the methyl groups can be all equatorial or all axial, whereas in the cis isomer there must always be one axial methyl group. From the Newman diagrams in Figure 3, it is seen that the axial methyl group has gauche interaction with each of the two next-nearest ring carbon atoms. This would lead to an expected decrease in stability by $2 \times 0.8 = 1.6$ kcal mole for the *cis* isomer, and this is very close to the observed 1.9 kcal/mole. For 1,3dimethylcyclohexane, the opposite is true, i.e., the trans isomer must have one axial methyl group, and we would predict it should be less stable than the cis isomer by 1.6 kcal/mole. The observed difference is 1.96 kcal/mole. In trans-1,2-dimethylcyclohexane, the two Me groups are equatorial, generating one gauche interaction. In the cis isomer, one Me group is equatorial and the other axial, generating three gauche interactions, since they are on adjacent carbon atoms. The observed difference in ΔH_i° is 1.87 kcal/mole, again equal to two gauche interactions within experimental error. Gauche interactions between ring carbon atoms are included in the ring correction.

This treatment of the cyclic compounds does not strictly adhere to our definition of the law of group additivity, since we cannot write disproportionation reactions that open the ring. However, this is generally a minor deviation.

Use of the open-chain hydrocarbon groups can cause some difficulties. For instance, the use of the values derived from conjugated dienes for the entropy of ring systems, like methylene-cyclobutene in conjunction with the entropy ring correction for cyclobutene itself, overcorrects for the stiffness of the ring since the diene has some stiffness already. In cases of this type, it is better to use the groups from unconjugated olefins.

Having established the ring corrections, we may use them to get group values from cyclic compounds. For instance, the heat of hydrogenation of 1,4-dihydronaphthalene to tetralin yields a value for the group $C-(C_B)(C_d)(H)_2$ if the ring correction for tetralin is taken as the sum of the strains in cyclohexene and that in 1,4-cyclohexadiene.

Such transferability of ring corrections must involve caution. For instance, the heat of formation of 1,2-dihydronaphthalene is predicted exactly, only if the ring correction is adjusted for the difference in conjugation energy of styrene and 1,2-dienes. Where ΔH_2 = heat of hydrogenation, the conjugation energies are defined as

conjugation energy of styrene = $\Delta H_{\rm H2}^{\circ}$ (styrene) – $\Delta H_{\rm H2}^{\circ}$ (mono-1-olefin) = 1.7 kcal/mole

 $\Delta H_{H_2}^{\circ} (\text{styrene}) = [C_B - (C)] - [C_B - (C_d)] + [C - (C)(C_B)(H)_2] - [C_d - (C_B)(H)] - [C_d - (H)_2] + [C - (H)_3(C)]$ $\Delta H_{H_2} (\text{mono-1-olefin}) = [C - (C)_2(H)_2] - [C - (C_d)(C)(H)_2] + [C - (C)_2(H)_2] - [C_d - (C)(H)] - [C_d - (H)_2] + [C - (H)_3(C)]$

conjugation energy of 1,3-dienes = $\Delta H_{\rm H2}^{\circ}$ (diene – $\Delta H_{\rm H2}^{\circ}$ (mono-1-olefin) = 4.07 kcal/mole

 $\Delta H_{\text{H}2}^{\circ} (1,3\text{-diene}) = [C_{d}-(C)(H)] + [C-(C_{d})(C)(H)_{2}] - [2C_{d}-(C_{d})(H)] + [C-(C)(H)_{3}] - [C_{d}-(H)_{2}]$ Thus, the ring correction for 1,2-dihydronaphthalene becomes

ring correction (cyclohexadiene-1,3) - (4.0 - 1.7) = 2.5 kcal/mole

In conclusion, we may summarize the usefulness of the law of group additivity, as applied to hydrocarbons, as follows. In the prediction of entropy and heat capacity, the additivity of group properties generally gives agreement with experiment within ± 0.5 gibbs/mole. In the estimation of heats of formation, the agreement is generally in the range ± 0.5 kcal/mole. For hydrocarbons, enough data of this type exist to make suspect any data which deviates from group additivity by more than 1 gibbs/mole or 1 kcal/mole. Exceptions to this rule will appear in the case of very heavily branched compounds.

This section prepared by S. W. Benson, H. E. O'Neal, and D. M. Golden.

IV. Oxygen-Containing Compounds

The three main sources of original data used were the Benson and Buss paper,² a valuable review by Green,⁵² and the IUPAC Bulletins of Thermodynamics and Thermochemistry.⁵³

⁽⁵²⁾ J. H. Green, Quart. Rev. (London), 15, 125 (1961).

⁽⁵³⁾ Bulletins of Thermodynamics and Thermochemistry, IUPAC, University of Michigan, Ann Arbor, Mich.

The group values are in Table XXXIV. In Tables VIII-XIII,54-109 observed data are compared with those estimated

- (54) National Bureau of Standards Technical Note 270-1, U. S. Govern-ment Printing Office, Washington, D. C., 1965.
- (55) E. V. Ivash, J. C. M. Li, and K. S. Pitzer, J. Chem. Phys., 23, 1814 (1955).
- (56) J. H. S. Green, Trans. Faraday Soc., 57, 2132 (1961).
- (57) E. Buckley and J. D. Cox, *ibid.*, 63, 895 (1967).
- (58) J. F. Mathews and J. J. McKetta, J. Phys. Chem., 65, 758(1961).
- (59) J. H. S. Green, Chem. Ind. (London), 1215 (1960).
- (60) H. A. Skinner and A. Snelson, Trans. Faraday Soc., 56, 1776 (1960).
- (61) M. A. Dolliver, T. L. Gresham, G. B. Kistiakowsky, E. A. Smith, and W. E. Vaughan, J. Am. Chem. Soc., 60, 440 (1938).
- (62) G. S. Parks, K. E. Manchester, and L. M. Vaughan, J. Chem. Phys., 22, 2089 (1954). (63) G. S. Parks, T. J. West, B. F. Naylor, P. S. Fujii, and L. A. Mc-
- Laine, J. Am. Chem. Soc., 68, 2524 (1946).
- (64) M. E. Dyatkina, Zh. Fiz. Khim., 28, 377 (1954).
- (65) J. H. S. Green, Trans. Faraday Soc., 59, 1559 (1963).
- (66) N. S. Berman and J. J. McKetta, J. Phys. Chem., 66, 1444 (1962).
- (67) G. S. Parks, J. R. Moseley, and P. V. Patterson, J. Chem. Phys., 18, 152 (1950).
- (68) E. T. Beynon and J. J. McKetta, J. Phys. Chem., 67, 2761 (1963).
- (69) R. P. Bell and J. C. Clunie, Trans. Faraday Soc., 48, 439 (1952).
- (70) R. J. L. Andon, D. P. Biddiscombe, J. D. Cox, R. Handley, D. Harrop, E. F. G. Herington, and J. F. Martin, J. Chem. Soc., 5246 (1960).
- (71) J. C. Evans, Spectrochim. Acta, 16, 1382 (1960).
- (72) J. H. S. Green, Chem. Ind. (London), 1575 (1962).
- (73) G. Pilcher, A. S. Pell, and D. J. Coleman, Trans. Faraday Soc., 60, **À99 (1964)**.
- (74) Z. Seha, Chem. Listy, 49, 1569 (1955).
- (75) G. Pilcher, H. A. Skinner, A. S. Pell, and A. E. Pope, Trans. Fara-day Soc., 59, 316 (1963).
- (76) M. Colomina, A. S. Pell, H. A. Skinner, and D. J. Coleman, ibid., **61,** 2641 (1965).
- (77) E. J. Smutny and A. Bondi, J. Phys. Chem., 65, 546 (1961).
- (78) M. Badoche, Bull. Soc. Chim. France, 8, 212 (1941).
- (79) R. C. Cass, S. E. Fletcher, C. T. Mortimer, H. D. Springall, and T. R. White, J. Chem. Soc., 1406 (1958).
- (80) J. H. Stern and F. H. Dover, J. Phys. Chem., 66, 97 (1962).
- (81) G. Baker, J. H. Littlefair, R. Shaw, and J. C. J. Thynne, J. Chem. Soc., 6970 (1965).
- (82) P. A. Giguere and J. D. Liu, J. Am. Chem. Soc., 77, 6477 (1955).
- (83) W. E. Vaughan, Discussions Faraday Soc., 10, 330 (1951).
- (84) W. Pritzkow and K. A. Muller, Chem. Ber., 89, 2316 (1956).
- (85) P. Gray and A. Williams, Chem. Rev., 59, 239 (1959).
- (86) J. W. Breitenbach and J. Derkosk, Monatsh., 82, 117 (1951).
- (87) L. Jaffe, E. J. Prosen, and M. Szwarc, J. Chem. Phys., 27, 416 (1957).
- (88) A. S. Pell and G. Pilcher, Trans. Faraday Soc., 61, 71 (1965).
- (89) S. Sundaram, Z. Physik. Chem. (Frankfurt), 36, 376 (1963).
- (90) A. A. Vvedenskii, Russ. J. Phys. Chem., 40, 1048 (1966).
- (91) F. L. Oetting, J. Chem. Phys., 41, 149 (1964).
- (92) R. F. Zurcher and H. H. Gunthard, Helv. Chim. Acta, 38, 849 (1955). (93) A. Snelson and H. A. Skinner, Trans. Faraday Soc., 57, 2125 (1961).
- (94) K. Pihlaja and J. Heikkilä, Acta Chem. Scand., 21, 2390 (1967).
- (95) G. B. Guthrie, D. W. Scott, W. N. Hubbard, C. Katz, J. P. Mc-Cullough, M. E. Gross, K. D. Williamson, and G. Waddington, J. Am. Chem. Soc., 74, 4662 (1952).
- (96) J. B. Conn, G. B. Kistiakowsky, and E. A. Smith, ibid., 61, 1868 (1939).
- (97) C. P. Keszthelyi and H. E. O'Neal, submitted for publication.
- (98) J. H. S. Green, J. Chem. Soc., 2241 (1961).
- (99) K. S. Pitzer and W. Weltner, J. Am. Chem. Soc., 71, 2842 (1949). (100) A. A. Antonov and P. G. Maslov, Russ. J. Phys. Chem., 38, 318 (1964).
- (101) I. A. Vasil'ev and A. A. Vvedenskii, ibid., 40, 453 (1966).
- (102) R. E. Pennington and K. E. Kobe, J. Am. Chem. Soc., 79, 300 (1957).
- (103) G. C. Sinke and F. L. Oetting, J. Phys. Chem., 68, 1354 (1964).
- (104) P. Landrieu, F. Baylocq, and J. R. Johnson, Bull. Soc. Chim. France, 45, 36 (1929).
- (105) P. Sellers, IUPAC, "Thermodynamik Symposium," Heidelberg, Sept 1967; Acta Chem. Scand., in press.
- (106) G. R. Nicholson, J. Chem. Soc., 2431 (1957).
- (107) W. Weltner, J. Am. Chem. Soc., 77, 3941 (1955).
- (108) F. W. Evans and H. A. Skinner, Trans. Faraday Soc., 55, 260 (1959).
- (109) R. B. Williams, J. Am. Chem. Soc., 64, 1395 (1942).

from groups. There are more groups and less observed data for oxygen compounds than for hydrocarbons. Consequently, there are many more sole sources for groups. But in the cases where there is enough information to make a reasonable test, such as in the heats of formation of the alcohols and ethers. it is clear that the principle of group additivity is valid. Compared with the number of heats of formation, there are very few entropies and heat capacities. For example, it is surprising that dimethyl ether is the only aliphatic ether for which the entropy or heat capacity has been measured.

The data are insufficiently precise or extensive to fix a good value for the gauche interactions in branched compounds. The value selected (0.3 kcal/mole) fits the data quite well, but values smaller or larger by 0.2 kcal/mole would do about as well.

This section prepared by S. W. Benson and R. Shaw.

V. Nitrogen-Containing Compounds

As with the oxygen-containing compounds, there are much less data for the nitrogen compounds than for the hydrocarbons. Consequently, the accuracy of the nitrogen groups is more variable and not so high as for the hydrocarbons. In some cases interpolation methods and similar approximations have been necessary to obtain a group value. No values are available for nitrogen compounds containing carbonyl groups, halogen atoms, etc., so that any complex intramolecular interactions in such compounds cannot be included in any estimate by group additivity.

A. AMINES

1. Aliphatic

The data and group predictions are presented in Table XIV.¹¹⁰⁻¹²⁰ In order to obtain the estimates for entropy and specific heats for all except the three methylamines, group values were used which have been obtained from compounds (RNH₂) by interpolating between the corresponding alcohols (ROH) and alkanes (RCH₃). This procedure was checked for CH₃NH₂, taking the arithmetic mean of values for CH₃OH and CH₃CH₃ (symmetry corrected for the entropy). The errors involved were less than 0.5 eu.

Some of the gas-phase heats of formation were suspected to be slightly in error, due to errors in estimated or measured heats of vaporization. These we revised, using Trouton's rule (and in the case of these amines, a Trouton constant, $S_{\rm T}$ = 22 eu, which may still be a trifle low) and corrected to 25°, using $\Delta C_{\rm p}({\rm vap}) \simeq 15$ eu.

(110) I. Jaffe, Thesis, University of Maryland, 1958.

- (111) A. A. Vvedenskii and V. M. Petrov, Russ. J. Phys. Chem., 39, 812 (1965).
- (112) K. A. Kobe and R. H. Harrison, Petrol. Refiner, 33 (11), 161 (1954).

(113) F. W. Evans, D. M. Fairbrother, and H. A. Skinner, Trans. Faraday Soc., 55, 399 (1959).

(114) A. F. Bedford, P. B. Edmondson, and C. T. Mortimer, J. Chem. Soc., 2927 (1962).

(115) W. E. Hatton, D. L. Hildebrand, G. C. Sinke, and D. R. Stull, J. Chem. Eng. Data, 7, 229 (1962).

- (117) G. N. Vriens and A. G. Hill, Ind. Eng. Chem., 44, 2732 (1952).
- (118) L. G. Cole and E. C. Gilbert, J. Am. Chem. Soc., 73, 5426 (1951).
- (119) D. J. Coleman and H. A. Skinner, Trans. Faraday Soc., 62, 2057 (1966).
- (120) N. K. Smith and W. D. Good, J. Chem. Eng. Data, 12, 572 (1967).

⁽¹¹⁶⁾ J. A. Kerr, R. C. Sekhar, and A. F. Trotman-Dickenson, J. Chem. Soc., 3217 (1963).

2. Aromatic

The data and group predictions are shown in Table XIV. It should be noted at this point that for single side chains attached to benzene rings the possibility of nonbonded steric interactions arises, even if the side chains are unbranched. For instance, in N-methylaniline, by analogy with ethylbenzene, the terminal methyl group, will be close ($\leq 90^\circ$) to one or other of the ortho positions of the benzene ring. This interaction cannot be classed as gauche in the strictest sense, and for simplicity's sake we have included it in the relevant group. For example, $C_6H_5N(C_2H_5)_2$ has only two "gauche" corrections worth 1.6 kcal/mole in all.

B. IMINES

As can be seen from Table XV,¹²¹ only ΔH_t° values are known for a few imines, but the internal consistency is fairly reasonable.

In Table XXXV, as stated, the N_I refers to the nitrogen in these compounds. In order to separate this group value from others in the molecule, the carbon atom end of the double bond was taken as a C_d atom (as in olefins), and it was assumed that the groups, $C-(N_1)(C)(H)_2$, $C-(N_1)(C)_2(H)$, were the same as $C-(N)(C)(H)_2$, $C-(N)(C)_2(H)$. This assumption holds well for olefins where it can be seen that $C-(C_d)(C)(H)_2$ is almost the same as $C-(C)_2(H)_2$.

C. CYANIDES (OR NITRILES)

The data are compared with the group predictions in Table XVI.^{122–136} Recent ΔH_f° values for alkyl cyanides are particularly sparse. A check on the group predictions for ethyl cyanide would be particularly valuable, for instance. The deviations observed for trans-dicyanoethylene may be real and may indicate a conjugation of electrons sufficient to cause departure from group additivity.

D. NITRO COMPOUNDS

The data are compared with group predictions in Table XVII. Since the only entropy data for nitro compounds were those of CH₃NO₂, it was necessary to use bond additivity to generate the entropy estimates listed here. It was from these estimates (symmetry corrected) that the group values listed in Table XXXV were calculated.

- (122) N. E. Duncan and G. J. Janz, J. Chem. Phys., 23, 434 (1955).
- (123) L. A. Weber and J. E. Kilpatrick, ibid., 36, 829 (1962).
- (124) F. W. Evans and H. A. Skinner, Trans. Faraday Soc., 55, 255 (1959).
- (125) J. H. S. Green, Spectrochim. Acta, 17, 607 (1961).
- (126) L. H. Daly and S. E. Wiberly, J. Mol. Spectry., 2, 177 (1958).
- (127) C. A. Wulff and E. F. Westrum, J. Phys. Chem., 67, 2376 (1963).
- (128) H. L. Clever, C. A. Wulff, and E. F. Westrum, ibid., 69, 1983 (1965).
- (129) F. Halverson, R. F. Stamm, and J. J. Whalen, J. Chem. Phys., 16, 808 (1948).
- (130) H. S. Davis and O. F. Wiedeman, Ind. Eng. Chem., 37, 482 (1945).
- (131) H. R. Wyss and H. H. Günthard, Helv. Chim. Acta, 44, 625 (1961).
- (132) R. H. Boyd, J. Chem. Phys., 38, 2529 (1963).
- "JANAF Interim Thermochemical Tables," D. R. Stull, Ed., (133)Dow Chemical Co., Midland, Mich., 1960-1966.
- (134) E. F. Westrum, Jr., and A. Ribner, J. Phys. Chem., 71, 1216 (1967).
- (135) A. Ribner and E. F. Westrum, Jr., ibid., 71, 1208 (1967).
- (136) R. H. Boyd, K. R. Guha, and R. Winthrick, ibid., 71, 2187 (1967).

											300°K			800°A		ſ
	Obsd	$H_{\rm f}^{\circ} \underbrace{Estd}$	۷	Ref	п, б	Obsd S°-	Estd	Δ	Ref	Obsd	Estd	Δ	Obsd	Estd	4	Ref
Compound																
C ₂ H ₆ CN	:	12.4	:	:		68.75	68.4	0.35	123	17.30*	17.30	[0.0]	32.7*	32.7	[0.0]	122
n-C ₃ H ₂ CN	7.45*	7.45	[0.0]	124		:	77.8	:	÷	:	22.8	÷	:	43.8	:	÷
i-C ₃ H ₂ CN	5.62*	5.62	[0.0]	124		:	76.2	:	:	:	23.4	÷	÷	43.4	:	:
C ₆ H ₆ CN	52.3*	52.3	[0.0]	124		76.89*	76.89	[0.0]	125	26.2*	26.2	[0.0]	52.1*	52.1	[0.0]	125
c-C,H,CN	:	43.5		:		70.7*	70.7	[0.0]	126	18.95*	18.95	[0.0]	37.68*	37.68	[0.0]	126
NCCH ₂ CH ₂ CN	:	45.0	:	:		79.10	79.0	0.1	127	:	22.2	÷	:	39.4	:	:
NCCH ₃ CH ₃ CH ₃ CN	:	40.0	:	:		88.1	88.51	-0.41	128	:	27.7	:	:	50.5	÷	:
(CH ₃) ₅ CCN	:	:	:	:		79.63*	79.63	[0.0]	134	:	÷	:	:	:	÷	:
CH ₂ =CHCN	43.7	43.6	0.1	130		65.56	64.20	1.36	129	15.30	14.90	0.4	26.43	26.4	0.03	129
trans-CH ₃ CH=CHCN	35.8	35.9	-0.1	131		71.43	72.8	-1.37	131	19.71	20.10	-0.39	36.97	37.0	-0.03	131
trans-NCCH=CHCN	81.3	74.8	6.5	136		:	:	:	÷	:	:	:	:	:	:	:
C ₂ H(CN) ₃	123.9	122.5	1.4	132		:	÷	:	:	:	:	:	:	:	:	:
C ₂ (CN)	168.5	171.3	-2.8	132		:	:	:	:	:	:	:	:	:	:	:
C ₂ (CN) ₂	127.5*	127.5	[0.0]	133		69.44*	69.44	[0.0]	133	20.58*	20.60	[0.0]	27.26*	27.26	[0.0]	133
(CH ₃) ₂ C(CN) ₂	÷	:	:	÷		83.42*	83.42	[0.0]	135	:	:	÷	:	:	:	÷
^a Each piece of data m for S° in ref 126 is in err	arked with <i>i</i> or.	un asterisk v	was the sole su	ource for (determinin	ıg a particula	r group v	alue, and t	herefore t	hese data ne	cessarily fi	t the group	predictions	6. ^b Note th	e quoted v	/alue

able XV Cyanides⁶

⁽¹²¹⁾ L. M. Jackson and D. I. Packam, Proc. Chem. Soc., 349 (1957).

Table XVII Nitro Compounds^a

		L°					<u> </u>		°K	~~~~~ <u>800</u> °	°K
Compound	Obsd	Estd	Δ	Ref	η, σ	Obsd	Estd	Obsd	^p Estd	Obsd	Estd
$\overline{C_2H_5NO_2}$	-23.8	-24.4	0.6	1396	3 × 2		75.2				
$n-C_3H_7NO_2$	-29.7	-29.3	-0.4	139	3×2		84.6				
<i>i</i> -C ₃ H ₇ NO ₂	-33.9	-34.4	0.5	139	$3^2 imes 2$		82.0				
$n-C_4H_9NO_2$	-34.4	-34.3	-0.1	139	3×2		94.0				
sec-C ₄ H ₉ NO ₂	-39.1	-38.5	-0.6	139	$3^2 imes 2$		91.4				
$C_2H_3CH(NO_2)_2$	-25.9*	-25.9	[0.0]	139							

^a Each piece of data marked with an asterisk was the sole source for determining a particular group value, and therefore these data necessarily fit the group predictions. ${}^{b} \Delta H_{v}^{\circ}$ revised to 9.7 kcal/mole.

E. NITRITES AND NITRATES

The data are compared with group predictions in Table XVIII. Heats of vaporization were generally consistent with a Trouton constant of 22.5 eu, for both classes of compounds, with the exception of $\Delta H_{\rm y}^{\circ}$ (*n*-C₃H₇ONO). Consequently, the latter was revised in accordance with $S_{\rm T} = 22.5$ eu.

F. HYDRAZINES, AZO COMPOUNDS, AND TETRAZINES

The data are compared with group predictions in Table XIX.145-150 Information on azo compounds is particularly lacking. It is interesting to note here a much quoted value for $\Delta H_1^{\circ}(CH_3N=NCH_3)$ of 43.2 kcal/mole.¹³⁷ This value was never measured, but merely estimated from $\Delta H_{\rm f}^{\circ}(i-C_{\rm s}H_{\rm 7}N)$ $NiC_{3}H_{7}$)¹³⁸ by a cruder additivity rule, which is, in principle, less reliable than that used in this paper. The data of Table XXXV would predict $\Delta H_{f}^{\circ}(CH_{3}N = NCH_{3}) = 44.7$ kcal/mole. It should be pointed out, however, that in deriving the group values for azo compounds, it was assumed that the increments in replacing H by Me in CH₃NNCH₃ were the same as the corresponding increments in the isoelectronic olefins CH₃CH-CHCH₂.

G. AMIDES AND IMIDES

The data are compared with group predictions in Table XX.¹⁶¹⁻¹⁵⁴ Unfortunately, there are no checks whatsoever on the group values for heats of formation among the amides,

- (142) J. D. Ray and R. A. Ogg, ibid., 63, 1522 (1959).
- (143) J. C. D. Brand and T. M. Cawthorn, J. Am. Chem. Soc., 77, 319 (1955).
- (144) P. Gray and P. L. Smith, J. Chem. Soc., 769 (1954).

- (146) R. C. Harshman, Jet Propulsion, 27, 398 (1957).
- (147) J. G. Aston, G. J. Janz, and K. E. Russell, J. Am. Chem. Soc., 73, 1943 (1951).
- (148) J. G. Aston, J. L. Wood, and T. P. Zolki, ibid., 75, 6202 (1953).
- (149) T. M. Donovan, C. H. Shomate, and W. R. McBride, J. Phys. Chem., 64, 281 (1960).
- (150) J. G. Aston, T. P. Zolki, and J. L. Wood, J. Am. Chem. Soc., 77, 281 (1955).
- (151) Z. Seha, Collection Czech. Chem. Commun., 26, 2435 (1961).
- (152) A. Bauder and H. H. Günthard, Helv. Chim. Acta, 41, 670 (1958).
- (153) A. A. Antonov, Zh. Obsch. Khim., 34, 2340 (1964).
- (154) I. Wadsö, Acta Chem. Scand., 19, 1079 (1965).

and therefore this table probably contains the least reliable information of any class of nitrogen-containing compounds listed thus far. However, the method of measuring heats of hydrolysis for many of these amides ought to give values for $\Delta H_{\rm f}^{\circ}$ at least as reliable as combustion measurements, and it is felt that these data are probably good to better than ± 2 kcal/mole.

H. NITROGEN-CONTAINING RING **COMPOUNDS**

The data for saturated nitrogen-containing ring compounds are included as corrections to group predictions and listed in Table XXXV. Comparison of these ring corrections with those of sections III and IV shows once again that, both for heats and entropies, they tend to depend primarily on ring size and not significantly on whether $a > CH_2$ has been replaced by an >O or an >NH group. Such a rule has been used to estimate several of the ring corrections, where data are lacking. Application of this rule must obviously be made with caution, since the ring correction for ΔH_i° for succinimide appears to be slightly high for a five-membered ring. In this particular case, however, we feel the data and imide group values are not sufficiently reliable to predict this ring correction to better than ± 2 kcal/mole and thus invalidate the rule.

The data for unsaturated, nitrogen-containing heterocyclic ring compounds (most ΔH_i° values) are listed in Table XXI.¹⁵⁵⁻¹⁶² These data do not readily extend themselves to the method of ring corrections by group predictions, since all of these compounds show resonance. The problem of estimation of the resonance energies involved depends on establishment of a proper standard of comparison. This is rather an involved and complex problem, and we feel that it would not be appropriate to discuss it here, particularly since it would not contribute to the task of empirical prediction.

(155) D. W. Scott, W. T. Berg, I. A. Hossenlopp, W. N. Hubbard, J. F. Messerley, S. S. Todd, D. R. Douslin, J. P. McCullough, and G. Waddington, J. Phys. Chem., 71, 2263 (1967).

- (160) R. J. L. Andon, J. D. Cox, E. F. G. Herington, and J. F. Martin, Trans. Faraday Soc., 53, 1074 (1957).
- (161) J. D. Cox, ibid., 56, 959 (1960).
- (162) J. Tjebbes, Acta Chem. Scand., 16, 916 (1962).

⁽¹³⁷⁾ M. Page, H. O. Pritchard, and A. F. Trotman-Dickenson, J. Chem. Soc., 3878 (1953).

⁽¹³⁸⁾ G. E. Coates and L. E. Sutton, ibid., 1187 (1948).

⁽¹³⁹⁾ D. E. Holcomb and C. L. Dorsey, Ind. Eng. Chem., 41, 2788 (1949).

⁽¹⁴⁰⁾ G. Geiseler and M. Rätzsch, Z. Physik. Chem. (Frankfurt), 26, Ì31 (1960).

⁽¹⁴¹⁾ J. D. Ray and A. A. Gershon, J. Phys. Chem., 66, 1750 (1962).

⁽¹⁴⁵⁾ J. G. Aston, H. L. Fink, G. J. Janz, and K. E. Russell, J. Am. Chem. Soc., 73, 1939 (1951).

⁽¹⁵⁶⁾ W. N. Hubbard, F. R. Frow, and G. Waddington, J. Phys. Chem., 65, 1326 (1961).

⁽¹⁵⁷⁾ J. P. McCullough, D. R. Douslin, J. F. Messerley, I. A. Hossenlopp, T. C. Kinchenloe, and G. Waddington, J. Am. Chem. Soc., 79, 4289 (1957).

⁽¹⁵⁸⁾ D. W. Scott, W. N. Hubbard, J. F. Messerley, S. S. Todd, I. A. Hossenlopp, W. D. Good, D. R. Douslin, and J. P. McCullough, J. Phys. Chem., 67, 680 (1963).

⁽¹⁵⁹⁾ D. W. Scott, W. D. Good, G. B. Guthrie, S. S. Todd, I. A. H senlopp, A. G. Osborn, and J. P. McCullough, *ibid.*, **67**, 685 (1963) A. Hos-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							T. Nitrite	able XVIII s and Nitra	ites ^a								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												300°K	{		800° K		(
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Obsd	H ₁ [°] Estd	Φ	Ref	п, σ	Obsd	Estd	Δ	Ref	Obsd	Estd	Δ	Obsd	Estd	۷	Ref
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-15.6 -24.2	-16.0 -24.5	0.4 0.3	141 85	~ ~ ~	70.14*	70.14 80.6	[0.0]	140	15.36*	15.36 20.35	[0.0]	26.27*	26.27 37.38	[0.0]	140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-30.1	-29.4	-0.7	85/	с С		90.10 26.20		: ;	÷	25.85	:	÷	48.45	÷	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-20.0	-37.2	0.4	142, 141 85	7 X X X X X N X X	16.CI	06.07 85.80	-0.66	145 144	:	•		•	:	:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-41.8	-42.1	0.3	85	3 X X		95.20			: :	: :		: :	: :	: :	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-45.7	-45.0	-0.7	85	$3^2 \times 2$:	92.20	:	÷	:	:	÷	:	:	:	
Table XIX Hydrastiles, Ano Compounds, and Tetrastiles Hydrastiles, Ano Compounds, and Tetrastiles - ΔH_1° Obsid Eard Ref 0.00	-	marked with	an asterisk v	vas the sole	source for	determini	ing a partic	ular group	o value, an	d therefor	re these data	a necessaril	y fit the gr	oup predict	ions. ${}^{b}\Delta H_{v}^{\circ}$	revised t	to 7.9
Hydrazines, Azo Compounds, and Tetrazines Hydrazines, Azo Compounds, and Tetrazines Obsat $\frac{\Delta H_1^o}{Ead}$ Δ Ref $n_i \sigma$ $\frac{300^\circ K}{Ead}$ Δ Ref $Obsat \frac{S_0}{Ead}$ Δ Ref $Obsat \frac{S_0}{Ead}$ Δ Ref $Obsat \frac{S_0}{Ead}$ Δ Ref $Obsat \frac{S_0}{Ead}$ Δ Ref $Obsat \frac{S_0}{Ead}$ Δ C_0° Ead Δ C_0°							L	rable XIX									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Hydra	zines, Azo (Compounds	, and Tetn	azines							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												300°K	{		800°K		ſ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Obsd	Ir ^e Estd	Δ	Ref	п, σ	S Obsd	Estd	Φ	Ref	Obsd	Estd	۷	Obsd	Estd	۵	Ref
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		22.8	22.8	0.0	133	2,2	57.03	56.9	0.13	133	12.19*	12.19	[0.0]	21.08*	21.08	[0.0]	133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22.3	22.2	0.1	146	2,1	66.72	67.0	-0.28	145	17.1*	17.1	[0.0]	31.3*	31.3	[0.0]	145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21.6	21.6	0.0	146	, 2 , 2	74.39	74.3	0.0	147	:	22.0	:	÷	41.6	:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.4	4.02	0.0	148, 149	- , - , -	78.21	/1.80	1.02	148	:	÷	:	:	:	:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20.7	: •	110 110	7,1	(4.4)	80.30	-1.0	061	:	÷	:	÷	:	:	
$\int_{0.57*}^{0.24} 50.2 [0.0] 133 \\ 65.7^{*} 65.7 [0.0] 133 \\ 65.7^{*} 65.7 [0.0] 133 \\ 65.7^{*} 65.7 [0.0] 133 \\ \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$		0 22	0.00 0 LL	7.0	110,117				:	:			:			:	
19.4* 19.5 [0.0] 138		50.2*	50.2	0.0]	133		52.22*	52.22	[0.0]		8.75*	8.75	[0.0]	13.55*	13.55		133
65.7* 65.7 [0.0] 149		19.4*	19.5	[0.0]	138		÷	÷		:	:	:		÷	:		
marked with an asterisk was the sole source for determining a particular group value, and therefore these data necessarily fit the group I Table XX Table XX Amides and Imides ^a $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		65.7*	65.7	[0.0]	149		:	:	:	:	:	:	÷	÷	÷	÷	
$Table XX \\ \textbf{Amides and Imides} \\ \hline \textbf{Amide and Imides} \\ \hline \textbf{Amide and Imides} \\ \hline \textbf{Amide and Imides} \\ \hline \ \textbf{Amide and Imides} \\ \hline Amide an$	-	narked with a	an asterisk v	ras the sole	source for	determini	ng a partici	ular group	value, and	i therefor	e these data	necessarily	fit the gro	oup predictio	ons.		
$\overbrace{Obsd}{\Delta Hi^{\circ}} \xrightarrow{\Delta Hi^{\circ}}{Estd} \Delta Rep n, \sigma \overrightarrow{Obsd} \overline{Estd} \Delta Rep \overrightarrow{Obsd} \overline{Estd} \Delta (C_{\sigma}^{\circ}) \xrightarrow{300^{\circ}K} \Delta (C_{\sigma}^{\circ}) \xrightarrow{300^{\circ}K}$.4	Table XX									
$\overbrace{\begin{array}{c c c c c c c c c c c c c c c c c c c$							Amid	es and Imid	lesª								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 1				ĉ					300°K	ſ		800°K-		{
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Obsd	Estd	Δ	Rej	п, о	Obsd	Estd	Φ	Ref	Obsd	Estd	Δ	Obsd	Estd	۷	Ref
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-44.5*	-44.5	[0.0]	152	:	59.62*	59.62	[0.0]	151	11.10•	1.11	[0.0]	21.12*	21.10	[0.0]	151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-57.8*	-57.8	[0.0]	154	÷	69.10	69.1	[0.0]	153	15.63	15.63	[0.0]	32.60*	32.6	[0.0]	153
-24.9^{*} -24.9 [0.0] 154 ⁶		-73.1*	-73.1	[0.0]	1546	32	:	105.2			•	:		:	÷		
-102.7* -102.7 [0.0] 154 ⁶			-24.9	[0.0]	1546	÷	:	÷			:	:		:	:		
		-102.7*	-102.7	[0.0]	1546	:	:	÷			÷	÷		÷	:		
-114.2* -114.2 [0.0] 154 ⁶		-114.2*	-114.2	[0.0]	1545	÷	÷	÷			:	÷		:	÷		
-65.5* -65.5 [0.0] 154 ^b		65.5*	-65.5	[0.0]	1546	:	:	:			:	÷		÷	÷		
	umo	values for ΔH	CHPCCO'	(H) and $\Delta H_{\rm e}$	ALCO BIVE	in in part	IV and kn	own or pro	nin estima	too for AF	To of womon	000					

Compound Name	formula	$\overline{Obsd}^{\Delta H}$	Ii°	Δ	Ref	n, σ	S° (obsd)	Ref	300°K Cp [°] 300 (obsd)	800°K C _p ° ₈₀₀ (estd)	Ref
Pyrrole		25.88			155	2	64.66		17.16	38.38	
2,5-Dimethylpyrrole		9.1			119	•••					
Pyrazole	$\mathbb{Z}_{\mathbf{N}}^{\mathbf{N}}_{\mathbf{H}}$	43.3		•••	114	•••					
Imidazole		30.6		••••	114	•••					
Pyridine	\bigcirc	33.5	33.2	0.3	156	2	67.7	159	18.80	42.49	157
Picolines, α		23.6	23.8	-0.2	158	3	77.8	160	24.05	53.21	158
ß		25.3	25.3	0.0	159	3	77.8	161	23.94	53.12	159
γ	\bigcirc	24.4	23.8	0.6	160	•••					
Dimethylpyridines (lutidines) 2,3	N.	16.3	16.5	-0.2	161	•••					
2,4		15.3	14.4	0.9	161	•••					
2,5	TOL N	15.9	15.9	0.0	161	•••	÷				
2,6		14.0	14.4	-0.4	161	•••					
3,4	Ć,	16.7	16.5	0.2	161	•••					
3,5	Ň	17.4	17.4	0.0	161	•••					
Pyridazine		66.5		•••	162	•••					
Pyrimidine		47.0		•••	162	•••					
Pyrazine	()NN	46.9		•••	162	•••					

Table XXI
Heterocyclic N-Atom-Containing Ring Compounds in the Ideal Gas State (1 Atm)

^a See text for explanation of method of estimation.

There appear to be small, systematic differences in positional isomers in the pyridine-substituted compounds, favoring ortho and para substitution. The simplest way to bring these compounds into the system of ring corrections is to use the N_I-(C_B) group to define the pyridine ring, and then make a -1.5 kcal correction for the extra stability due to ortho and para substitution, and otherwise the same ortho corrections as in benzene. The agreement between estimates arrived at thus and observed ΔH_t° values is seen from Table XXI to be good. A comparison of these effects of methyl substitution with those for benzene itself $[\Delta H_t^\circ(C_6H_5CH_3) - \Delta H_t^\circ(C_6H_6) = 7.8$ kcal/mole] shows that methyl substitution on pyridine always produces a slightly greater stabilization than on benzene.

As far as the various isomeric heterocycles containing two ring nitrogen atoms are concerned, it is evident that isomers in which the nitrogen atoms are bonded to one another are significantly less stable than those in which they are not. This could have been qualitatively anticipated on the general grounds of electronegativity.

I. SOME UNIQUE GROUP COMPOUNDS

The above tables represent the extent of the comparison possible between existing data and group predictions. The group additivity method offers no rationale of the properties of particular low molecular weight compounds which are themselves unique groups. In addition, methods are available

					Table .	XXII						
					Unique G	Froups						
								C _p °		<u></u>		
Compound	ΔH_{f}°	Ref	S°	Ref	300°	4 00°	500°	6 00 °	800°	1000°	1500°	Ref
NH ₃	-10.98	133	46.09	133	8.53	9.24	10.04	10.81	12.23	13.47	15.85	133
HCN	32.3	133	48.27	133	8.61	9.42	10.04	10.56	11.45	12.18	13.48	133
CH ₃ CN	(19.1) ^a		58.2	165	12.55	14.66	16.65	18.42	21.32	23.55		165
$(CN)_2$	73.87	133	57.80	133	13.59	14.77	15.62	16.31	17.42	18.24	19.43	133
$CH_2(CN)_2$	63.5	136	69.16	166	17.38	20.22	22.61	24.60	27.72	30.00		166
HNC			48.78	167	9.33	9.97	10.44	10.83	11.49	12.06	13.10	167
CH ₃ NC	35.9	168	59.06	177	12.83	14.80	16.72	18.45	21.34	23.56		177
HN ₃	71.6	169	57.14	169	10.46	11.74	12.81	13.71	15.10	16.12	17.68	169
CH₃N₃	67	170, 163										
CH_2N_2	71	172	58.11	171	12.58	14.23	15.62	16.87	18.73	20.19	22.52	171
N												
CH	79	174	56.93	173	10.23	12.39	14.34	15.94	18.35	20.04		173
	.,	171										
IN	37 0	122	56 00	122	10 57	12 00	12 11	12 02	15 10	16 12	17 62	122
HCNU	- 27.9	133	50.98	133	10.37	0 70	0.24	13.33	10.77	10.15	17.02	122
HNU CU NO	23.0	155	52.70	155	0.29	0./9	9.34	9.01	10.77	11.45	12.31	155
CH ₃ NO	(10)"	100	E0 (3	100	10.05	10.06	12 40	14 27	15 66	16 55	17 00	122
HONO	-18.6	133	59.05	133	10.95	12.50	13.40	19.37	10.00	10.55	17.90	133
HUNO ₂	- 32.1	133	65.12	133	12.00	16.00	10.93	10.55	20.33	21.01	23.42	133
CH ₃ NO ₂	-17.9	1/5	05.81	1/5	13.70	10.00	19.30	21.92	23.30	20.17	32.05	1/5
N_2	0	133	45.//	133	0.90	0.99	7.07	7.20	7.01	7.02	8.33	133
NO	21.58	133	50.39	133	/.13	7.10	1.29	10.00	11 00	0.12	8.33	133
	/.91	133	57.40	133	8.85	9.60	10.33	10.90	11.88	12.4/	13.20	133
NO ₃ sym	16.6	133	60.42	133	11.26	13.37	14.96	16.11	17.51	18.28	19.12	133
NO ₃ unsym	14	176	68	176			10.05		10 10			
N ₂ O	19.61	133	52.60	133	9.25	10.20	10.95	11.5/	12.49	13.11	13.96	133
N_2O_3	19.8	133	74.01	133	15.72	17.39	18.73	19.82	21.39	22.38	23.61	133
N_2O_4	2.54	133	72.84	133	18.52	21.16	23.23	24.86	27.11	28.49	30.16	133
N_2O_5	2.70	133	82.94	133	23.09	26.49	28.97	30.68	32.74	33.81	34.91	133
$CH_2 = CHNO_2$	•••		70.6	178	17.43	21.5	24.9	27.7	31.7	34.5	38.5	178

^a Estimates. See text.

for estimation of heats of formation of unstable or nonexistent compounds, as well as those of some classes for which no gas-phase data exist. All this information is discussed in the following sections.

The thermodynamic data for these particular compounds are shown in Table XXII.¹⁶⁵⁻¹⁶⁸ The entropy and specific heat values are almost certainly reliable as are most of the heats of formation. A few of these latter, however, require comment. $\Delta H_{\rm f}^{\circ}({\rm CH_2N_2})$ is uncertain to ± 5 kcal/mole and $\Delta H_{\rm f}^{\circ}({\rm C-}$ $CH_2N = N$ may be even less certain. $\Delta H_f^{\circ}(CH_3CN)$ was obtained by interpolation between $\Delta H_{\rm f}^{\circ}({\rm HCN})$ and $\Delta H_{\rm f}^{\circ}$ -(C_2H_5CN). The series HCN, CH_3CN , and C_2H_5CN is analogous to HCHO, CH₃CHO, C₂H₅CHO, in that both -CN and >C=O are very polar groups. Thus, we would expect the increments in ΔH_i° to be the same between analogous pairs in these homologous series. This is approximately the case for $\Delta H_i^{\circ}(\text{HCN}) - \Delta H_i^{\circ}(\text{HCHO}) = 60.0 \text{ kcal/mole and } \Delta H_i^{\circ}$ $(C_2H_5CN) - \Delta H_f^{\circ}(C_2H_5CHO) = 58.2$ kcal/mole. Thus, we have used $\Delta H_1^{\circ}(CH_3CN) - \Delta H_1^{\circ}(CH_3CHO) = 58.8 \text{ kcal/mole}$ to calculate $\Delta H_{\rm f}^{\circ}(\rm CH_3CN)$.

 $\Delta H_f^{\circ}(CH_{\mathfrak{z}}NO)$ was obtained from $\Delta H_f^{\circ}(CH_{\mathfrak{z}})^{163}$ and $\Delta H_f^{\circ}(NO)^{133}$ by assuming $DH^{\circ}(CH_{\mathfrak{z}}NO) = 40$ kcal/mole. The

- (166) F. Halverson and R. J. Francel, J. Chem. Phys., 17, 694 (1949).
- (167) D. E. Milligan and M. E. Jacox, *ibid.*, **39**, 712 (1963).
- (168) "Selected Values of Chemical Thermodynamic Properties," Circular 500, National Bureau of Standards, Washington, D. C., 1952.

latter value is supported by kinetic evidence from NOcatalyzed isomerization of olefins,¹⁶⁴ although it is not in agreement with an earlier estimate of 57 kcal/mole proposed by Gowenlock, Trotman, and Batt.¹⁷⁹

J. MISCELLANEOUS COMPOUNDS

There are little or no data on gas-phase heats of formation of 1,1-diamines, azines, Schiff bases, oximes, hydroxylamines, nitroso compounds, nitramines, and azides. However, we have been able to estimate some of these, and our results are shown in terms of the group contributions contained in Table XXXVI. Heats of formation, calculated from this table, are unlikely to be more accurate than ± 2 kcal/mole, but are probably not worse. Part of the table is self-explanatory, but the origin of some of the quoted values requires detailed explanation.

Bond dissociation energies can sometimes be useful for estimates of heats of formation, and these have been used to

(171) C. B. Moore and G. C. Pimentel, J. Chem. Phys., 40, 342 (1964).

(172) G. C. Hassler and D. W. Setser, J. Am. Chem. Soc., 87, 3793 (1965).

- (173) R. Ettinger, J. Chem. Phys., 40, 1693 (1964).
- (174) G. S. Paulett and R. Ettinger *ibid.*, 39, 825 (1963).

- (176) W. A. Guillory and H. S. Johnston, J. Chem. Phys., 42, 2457 (1965).
- (177) M. G. Krishna-Pillai and F. F. Cleveland, J. Mol. Spectry., 5, 212 (1960).
- (178) K. R. Loos and H. H. Gunthard, J. Chem. Phys., 46, 1200 (1967).
- (179) B. G. Gowenlock, J. Trotman, and L. Batt, Special Publication
- No. 10, The Chemical Society, London, 1957, p 75.

⁽¹⁶³⁾ D. M. Golden, R. Walsh, and S. W. Benson, J. Am. Chem. Soc., 87, 4053 (1965).

⁽¹⁶⁴⁾ S. W. Benson, K. W. Egger, and D. M. Golden, *ibid.*, **87**, 468 (1965).

⁽¹⁶⁵⁾ G. A. Crowder and B. R. Cook, J. Phys. Chem., 71, 914 (1967).

⁽¹⁶⁹⁾ D. A. Dows and G. C. Pimentel, J. Chem. Phys., 23, 1258 (1955).

⁽¹⁷⁰⁾ B. L. Evans, A. D. Yoffe, and P. Gray, Chem. Rev., 59, 515 (1959).

⁽¹⁷⁵⁾ J. P. McCullough, D. W. Scott, R. E. Pennington, I. A. Hossenlopp, and G. Waddington, J. Am. Chem. Soc., 76, 4791 (1954).

Oxime	$\Delta H_{ m f}^{\circ}_{ m cryst}$	Ref	$t_{\rm B},^{\circ}C$	${\Delta H^{\circ}_{fusion}\over (estd)^a}$	$\Delta H_{\rm v}^{\circ}(estd)^a$	$\Delta H_{\rm f}^{\circ}(g)$	$\Delta H^{\circ}(g, estd)$
CH₃CH=NOH	-18.2	168	115	3	10.5	-4.7	-6.3
CH=NOH	-21.1	168	~280	4	17	0	+1.9
CH=NOH							
NOH NOH	-81.6	181	~350	4	20	-7.6	-8.1
Octenal 1-monoxime	-56.8			4	16.5	-36.3	-36.0
Octenal 2-monoxime	-59.3	100	250	4	16.5	38.8	-38.5
Octenal 3-monoxime	-55.4	162	~250	4	16.5	-36.9	-37.7
Octenal 4-monoxime	- 59.8		J		16.5	-39.3	-37.7

 Table XXIII

 Heats of Formation of Oximes at 25° and 1 Atm

^a See text.

obtain the group values for the C-nitroso compounds. It should be pointed out that only the secondary (C-NO) bond strength is known with any assurance, but it would be surprising if other C-NO bond strengths were significantly different. We have, however, made small adjustments to reflect reasonable differences in these bond strengths.

 $\Delta H_t^{\circ}(\text{NH}_2\text{OH},\text{g})$ has not been measured directly and the value quoted in the table was obtained by combining the value for $\Delta H_t^{\circ}(\text{NH}_2\text{OH},\text{aq}) = -23.5 \text{ kcal/mole}^{180}$ with an estimate for the heat of solvation of -14.2 kcal/mole. The latter was obtained by taking the mean of the heats of solvation of N₂H₄ (-14.5 kcal/mole)¹⁶⁸ and H₂O₂ (-13.9 kcal/mole).¹⁸⁸ This procedure offers the most reasonable method of allowing for solvent interaction in hydroxylamine solution.

The heats of formation of C-methyl- and O-methylhydroxylamines have never been measured but have been estimated here by consideration of the effects of substituting a methyl group for hydrogen among a series of isoelectronic molecules. The following table for $\Delta H_t^{\circ}(CH_3XY) - \Delta H_t^{\circ}(HXY)$ summarizes these numbers (in kcal/mole). All values for ΔH_t° used in compiling this table are observed values listed in this paper and sections III and IV, except that for $\Delta H_t^{\circ}(CH_3OOH)$, which is a group additivity value of -30.9 kcal/mole and is probably slightly more reliable. If the figures in parentheses are omitted, trends can nevertheless be seen both across the rows and down the columns of this table, and the two figures in parentheses were inserted to be consistent with these trends. From these two values, $\Delta H_t^{\circ}(CH_3NHOH)$ and $\Delta H_t^{\circ}(NH_3OCH_3)$ were obtained.

		Y	
Y	- <i>CH</i> ₂ -	- <i>NH</i> -	-0-
-CH₃	-4.6	+1.0	+4.1
$-NH_2$	-5.5	-0.5	(+3.1) ^a
OH	-8.1	$(-2.7)^{a}$	+1.6

^a Obtained by interpolation.

Heats of formation of several solid oximes are known from combustion measurements, and these are listed in Table XXIII.^{161,182} Unfortunately, their heats of sublimation are not known with any assurance. Attempts to measure these latter have usually been performed by the effusion technique. However, in most cases no checks were made to discover whether the vapors emerging from the effusion cell were actually those of the oximes, or those of their decomposition fragments. If, as we suspect, the latter was often the case, then serious underestimates of heats of sublimation have been made. Thus, we have disregarded quoted values for heats of sublimation and attempted to estimate them. Our estimates are shown in columns 4 and 5 of Table XXIII. The heats of fusion are typical of organic solids of relatively high molecular weight, while the heats of vaporization were derived from Trouton's rule ($S_T = 23$ eu) and the boiling points (some of which were guessed), as listed in the table. This procedure is admittedly rather crude, but the comparison between $\Delta H_f^{\circ}(g)$ derived from this procedure, and ΔH_t° (g,estd) derived from the group value, N1-(OH) in Table XXXVI, indicates that the scatter is less than ± 2 kcal/mole. Thus, only if all the values of $\Delta H_t^{\circ}(g)$ are systematically in error is the oxime group value for ΔH_i° worse than ± 2 kcal/mole.

In Table XXXVI the group contribution of C-(N)₂(H)₂ to ΔH_t° has been derived from the symmetrical triazine shown. The other groups occurring in this ring are all known and the ring strain has been taken by analogy with

as +2.8 kcal/mole. In any case, since the group of interest occurs three times in the molecule, errors in estimation of the ring strain will be reduced by a factor of 3 in the group value. For this reason the value ought to be reasonably reliable. The heat of formation of 1,3,5-trimethylkexahydro-1,3,5-triazine has been derived from measurements of the equilibrium constant for

in the temperature range 98-164°, by Gowenlock and

^{(180) &}quot;Selected Values of Chemical Thermodynamic Properties, Series I," Technical Note 270-1, National Bureau of Standards, Washington, D. C., 1965.

⁽¹⁸¹⁾ C. R. Brent, Dissertation Abstr., 24, 3108 (1964).

⁽¹⁸²⁾ G. Geiseler, M. Rätzsch, K. Ebster, and E. Zeigel, Ber. Bunsenges. Physik. Chem., 70, 221 (1966).

Thomas.¹⁸³ Unfortunately, in their paper, there is an error where by K_{eq} has been wrongly described as K_p but, from examination of the results, it is evidently K_c . Consequently, a quoted value for ΔH° at 35 kcal/mole is, in reality, a value for ΔE° . We have recast their results in the proper units where we find that $\Delta H^{\circ} = 36.6$ kcal/mole and also that $\Delta S^{\circ} = 83.5$ eu (at ~400°K). However, there is a more serious criticism of these results, which becomes evident when they are compared with the one for the similar equilibrium

i

Using group values in section III, we calculate that at 400°K. $\Delta S^{\circ} \simeq 99$ eu for this system. It has been clearly demonstrated¹⁸⁴ that substitutions of -N< for -CH< in such molecules scarcely affect entropy values, at or near to room temperature. Moreover, where entropy changes are concerned, any small differences between the above equilibrium and that studied by Gowenlock and Thomas ought to be self-cancelling. Therefore, we would expect that in the former equilibrium ΔS° ought to be \simeq 99 eu, also. This argument throws some doubt onto what Gowenlock and Thomas were actually observing. Since they, unfortunately, only made pressure measurements, they could not be certain that side reactions were not occurring. We have taken the point of view that while the observed variation of $K_{\rm p}$ with temperature may be somewhat in error, the over-all magnitude of $K_{\rm p}$ in the middle of their temperature range (400°K) is approximately correct. With this assumption, and a value of $\Delta S^{\circ} \simeq 99$ eu, it can be shown that $\Delta H^{\circ} = 42.8$ kcal/mole (at 400°K). Furthermore, this value is not particularly sensitive to errors in K_p , since an error of a factor of 10 in the latter would only lead to an error of $\simeq 1.8$ kcal/mole in ΔH° . At room temperature, $\Delta H^{\circ} = 42.5$ kcal/mole, and when combined with a group additivity estimate of ΔH_i° - $(CH_3-N=CH_2) = 17.3$ kcal/mole (which may be obtained directly from Table XXXV), $\Delta H_f^{\circ}(1) = 9.4$ kcal/mole is obtained.

This section prepared by S. W. Benson and R. Walsh.

VI. Halogen-Containing Compounds

The data for halogen-containing groups, as for the nitrogen groups, come principally from compounds containing no other type of substituent, and conformational corrections differ from those applicable to hydrocarbons. Analysis of the rotational isomers of *n*-propyl chloride,^{185,186} bromide,¹⁸⁶ and fluoride,¹⁸⁷ for example, has indicated that the gauche isomer is somewhat more stable (~ 0.1 kcal/mole) than the *trans* isomer. Consequently, no correction for gauche interactions between alkyl substituents and halogens will be used. Similarly, no correction will be made for gauche interactions between halogens and

- (186) C. Komaki, I. Ichishima, K. Kuratani, T. Miyazawa, T. Shumanouchi, and S. Mizushima, Bull. Chem. Soc. Japan, 28, 330 (1955).
- (187) E. Hirota, J. Chem. Phys., 37, 283 (1962).

amino, alkoxy, thiol, and vinyl substituents. On the other hand, analysis of the 1,2-dihaloethanes of chlorine,188,189 bromine.¹⁸¹ and fluorine¹⁹⁰ indicates a value +1.0 kcal/mole for chlorine-chlorine and bromine-bromine gauche interactions, but none for fluorine-fluorine. We shall adopt a correction of 1.0 kcal/mole for gauche interactions between chlorine, bromine, and iodine, and no correction for interactions between halogens and fluorine.¹⁹¹ Little evidence is available with respect to cis corrections in olefins. The cis isomer of 1,2dichloroethylene is 0.4 kcal/mole more stable than the trans.¹⁹² We will assume no *cis* correction is necessary for halogens or for halogen-alkyl groups and make the usual assumption that cis-alkyl groups are 1.0 kcal/mole less stable than trans, including perhaloalkyl groups.¹⁹³ Ring strains are assumed to be the same as for the unsubstituted rings. This is probably in error for cyclopropane rings. ortho corrections are made as

Data and Estimated Values. The group values for haloalkanes are summarized in Table XXXVII and a comparison with observed data, from which the groups were obtained, is made in Table XXIV. The values for haloalkenes, -alkynes, and -arenes are given in Table XXXVII and compared with experiment in Table XXV. The heats of formation of all fluorine-substituted compounds have been corrected to conform with $\Delta H_{\rm f}^{\circ}_{298}$ (HF,g) = -64.8 kcal/mole,¹³³ and extensive use has been made of Stull's compilation of vapor pressure data¹³⁴ to determine $\Delta H_{\rm v}^{\circ}$ (25°), when necessary.

indicated by the data.

Although the data for haloalkanes is somewhat sparse, the estimates agree to ± 2 kcal/mole in $\Delta H_{\rm f}$, ± 1 gibbs/mole in S°_{298} , and ± 0.5 gibbs/mole in C_{p}° . Kolesov, et al.,¹⁹⁵ have reported $\Delta H_1^{\circ}_{298}(CF_3CH_3) = -175.9$ kcal/mole, 8 kcal/mole more stable than predicted by groups; however, they experienced incomplete combustion ($\sim 95\%$) and only analyzed for HF and CO₂. Formation of CF₂=CH₂, CO, CH₂F₂, etc., would all lead to low values of ΔH_{f} , so that their results are not included. Rodgers¹⁹⁶ has suggested that nearest-neighbor interactions only may prove insufficient to adequately predict ΔH_i° of mixed fluorocarbon-hydrocarbon compounds, and there appears adequate evidence of this in haloalkenes. Thus, $CF_2 = CH_2$ and $CH_2 = CCl_2$ are 9.3 and 3.9 kcal/mole more stable than the estimates from group contributions (Table XXV). Compounds composed of groups of widely different polarity may show deviations resulting from dipole-dipole interactions. Such an effect might be expected to stabilize CF₃-CH₃ also. Additional evidence of discrepancies in the alkene groups comes from the equilibrium data of Schlag and Peatman¹⁹⁷ (1) and Chesick¹⁹⁸ (2):

(190) P. Klaboe and J. R. Nielsen, J. Chem. Phys., 33, 1764 (1960).

- (193) E. W. Schlag and E. W. Kaiser, Jr., ibid., 87, 1171 (1965).
- (194) D. R. Stull, Ind. Eng. Chem., 39, 517 (1949).

- (196) A. S. Rodgers, J. Phys. Chem., 71, 1996 (1967).
- (197) E. W. Schlag and W. B. Peatman, J. Am. Chem. Soc., 86, 1676 (1964).
- (198) J. P. Chesick, ibid., 88, 4800 (1966).

⁽¹⁸³⁾ B. G. Gowenlock and K. E. Thomas, J. Chem. Soc., B, 409 (1966).
(184) S. W. Benson, "Techniques of Thermochemical Kinetics," John Wiley and Sons, Inc., New York, N. Y., 1968.

⁽¹⁸⁵⁾ T. N. Sarachman, J. Chem. Phys., 39, 469 (1963).

⁽¹⁸⁸⁾ S. Mizushima "Structure of Molecules and Internal Rotation," Academic Press, New York, N. Y., 1954, p 41.

⁽¹⁸⁹⁾ G. Allen, P. N. Brier, and G. Lane, Trans. Faraday Soc., 63, 824 (1967).

⁽¹⁹¹⁾ The data are somewhat mixed on this point. See: (a) R. E. Kagarise, *ibid.*, **29**, 680 (1958); (b) P. Klaboe and J. R. Nielsen, *ibid.*, **32**, 899 (1960).

⁽¹⁹²⁾ K. S. Pitzer and J. L. Hollenberg, J. Am. Chem. Soc., 76, 1493 (1954).

⁽¹⁹⁵⁾ V. P. Kolesov, A. M. Martynor, and S. M. Skurator, Russ. J. Phys. Chem., 39, 223 (1965).

		(°)				°.S			(° ر			ر			
Compound	Obsd	Estd	Δ	Ref	n, σ	Obsd	Estd	Δ	Ref	Obsd	Estd	Þ	Obsd	Estd	Δ	Ref
CF,CCI,	:				32	86.4	88.5	-2.0	199	28.1	29.0	-0.9	39.6	39.9	-0.3	661
CF2CICF2CI	-212.6	-212.6	[0]ء	196	7	÷				28.9	27.4	+1.5	:			200
CF ₃ CF ₃	-316.8	-316.8	0.0	133	$3^2 \times 2$	79.4	79.3	0.1	201	25.5	25.4	0.1	38.3	38.6	0.3	201
cclacch	-35.3	-35.4	0	196	$3^2 \times 2$	94.8	95.1	0.3	202	32.7	32.6	0.1	41.3	41.2	0.1	202
CBr ₃ CBr ₃	:				$3^2 \times 2$	105.6	105.6	0	202	33.4	33.4	[0]	39.9	39.8	[0]	202
CF_sCHClBr	:				2×3	87.1	87.1	[0]	203	25.1	25.1	[0]	37.2	37.2	[0]	203
CF3CHCl3	•				ę	84.1	84.0	0.1	199	24.4	24.8	-0.4	37.3	37.6	-0.3	199
CF ₃ CH ₂ CI	:				ŝ	78.2	78.1	0.1	204	21.4	21.6	-0.2	34.8	34.6	-0.2	204
CF ₃ CH ₂ Br	:				ŝ	80.7	81.1	-0.4	204	21.8	21.8	0.0	35.1	34.8	0.3	204
CF ₃ CH ₃ I	:				e	82.5	82.8	-0.3	204	21.9	21.9	[0]	35.1	35.1	[0]	204
CF ₃ CH ₃ F	:				ę	76.0	75.7	0.3	204	20.9	20.8	0.1	34.5	34.5	0.0	204
CF ₃ CH ₃					3²	68.5	68.5	0.0	205	18.9	18.9	0.0				206
CHF ₂ CH ₃ F	(-159.5)	-161.1	+1.6	196								2				2
CHCl ₂ CH ₂ Cl					I	80.6	81.5	-0.9	208	21.3	21.0	0.3	33.3	33.2	0.1	208
CH ₃ CCl ₃	:				32	77.2	76.4	0.8	209	22.4	22.5	-0.1	33.3	33.6	-0.3	209
CH,CHF,	(-121)	-119.4	-1.6	196	e	67.3	67.3	[0]	210	16.1	16.1	[0]				210
CH ₂ CHCl ₂	(-31)	29	0] <i>د</i>	211	~	72.9	6.17	1.0	212	18.2	18.3		6 UL	30.9	0 0	12
	-31.1	-31.4	0	213, 214	1											114
CHICHLE					۲	63.3	63.6	-03	215		14 3	C 0 -	:			215
		0 36	-	210	, ,	1 77	0.00			1.71		1 0 0		000	4	
CHICHICI	1.02-	0.02-	1.0	017	n	1.00	00.0	1.0	717	1.61	1.61	0.0	28.3	28.3	0.0	217
CH ₃ CH ₂ Br		0.01-	0.8	216	'n	68.6 	69.0	-0.4	217	15.5	15.3	0.2	28.6	28.5	0.1	217
CF2CICF2CF2CI	:					97.3	97.4	0	218	37.4	37.3	0	:	:	:	218
CF ₃ CF ₂ CH					32	86.3	86.3	0	218	28.8	28.8	0	÷			218
CH ₃ CH ₂ CH ₂ F	-66.8	-66.8	ē	207		:				:			:			218
CH ³ CHFCH ³	-68.6	-68.6	<u>o</u>	207		:				:			:			:
CH3CH2CH2CI	-31.2	-30.9	-0.3	216		76.4	75.4	1.0	217	20.3	20.6	-0.3	39.2	39.4	-0.2	217
CH3CHCICH3	-32.9	-33.0	[0]	216	32	74.1	74.1	[0]	219	21.3	21.3	[0]	:			219
CH ₃ CCl ₂ CH ₃	(-41.7)	-39.7	<u>و</u> اً	211		:				:						
CH ₃ CH ₂ CH ₂ Br	-19.9	-20.6	0.7	216		79.2	78.4	0.8	217	20.7	20.8	-0.1	39.4	39.6	-0.2	217
CH ₃ CHBrCH ₃	-22.7	-23.6	0.9	216		:				:			:			
CH ₃ CH ₂ CHBrCH ₂ Br	-24.4	-23.8	-0.6	220		:				÷			:			
(CH ₃) ₅ CCI	-43.0	-43.0	0	219	34	77.0	77.0	[0]	219	27.9	27.9	[0]	:			219
CH ₃ CH ₂ CHBrCH ₃	-28.7	-28.6	-0.1	220, 221		:				:			•			
CH ₅ CH ₂ CH ₂ CH ₂ Br	-25.7	-25.5	-0.2	220		:				:			:			
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Br	-31.0	-30.5	-0.5	220		:				:			:			
<i>n</i> -C ₇ F ₁₆	-801.9	-801.8	0.1	222						:			:			
CF ₃ CC ₆ F ₁₁	-687.3	-687.3^{d}	0.0	222												
CF ₃ CF ₂ CC ₆ F ₁₁	-783.5	-783.5^{d}	0.0	222												
1,2-Br ₂ CC ₆ H ₁₀	-26.3	-26.6^{d}	0.3	220												
<i>n</i> -C ₆ H ₁₃ Br	-35.9	-35.5	-0.4	220												
<i>n</i> -C ₇ H ₁₆ Br	-40.7	-40.5	-0.2	220												
<i>n</i> -C ₈ H ₁₇ Br	-46.3	-45.5	-0.8	220												
CH ₂ ICH ₂₂ I	15.9	15.9	[0]	224	7	83.3	83.6	-0.3	224	19.2	18.4	0.8				224
CH4ICHCH4I	10.6	10.95	-0.35	224												
CH ³ CHICH ³ I	8.6	8.6	0	224	2, 3	94.3	94.3	0	224	(24.1)	24.1	[0]				224
(CH ₃) ₅ CI	-17.2	-17.2	[0]	225	34	82.5	82.5	<u>0</u>	225							
(CH ₃) ₂ CHCH ₂ CH(NF ₂)CH ₂ (NF ₂)	-52.0	-52.0	[0]	223												
^a [0] indicates group value determ	iined by these	data. ^b Parei	ntheses in	dicate que	stionable	data. $^{e}\Delta H_{\rm f}$	°'s from rel	211 are	generall	y 2 ± 2 k	cal/mole t	oo stable,	, and grou	ip values 1	lave been	cor-

Table XXIV: Haloalkanes

302

ź 2 ^a [0] indicates group value determined by these data. ^b rarel respondingly adjusted. ^d Calculated assuming strain-free ring.

					Table	XXV: Halo	oalkenes, Al	lkynes, an	d Arenes							
Compound	Obsd	fe ^e Estd	۷	Re,	п, о	Obsd S	Estd	٩	Ref	Obsd	³⁰⁰ Estd	۵	Obsd	B00 Estd	Δ	Ref
CFCI=CCI ³					-	81.7	81.9	-0.2	226	21.8	21.7	0.1	28.8	28.8	0.0	226
CF ₂ =CCIBr					1	82.4	82.4	[0]	227	21.8	21.8	[0]	28.5	28.5	0	227
CFCI=CFCI					7	78.2	78.2	0.0	226	21.0	20.6	0.4	28.4	28.4	0.0	226
CF ₂ —CBr ₂					2	87.0	83.5	3.5	228	22.2	22.0	0.2	:			
CF ₂ =CFCI					1	77.0	77.1	-0.1	229	20.0	20.0	0	28.0	28.0	0.0	229
CF2=CFBr					1	79.8	79.8	0	230	20.5	20.5	0	28.1	28.1	0	230
CF2=CF2	-155.0	-155.0	0	231	2^{2}	71.7	71.8	-0.1	231	19.3	19.4	-0.1	27.6	27.6	0.0	231
ccl ₂ =ccl ₂	-3.6	-3.6	0	196	2²	81.3	81.4	-0.1	232	22.7	22.8	-0.1	29.2	29.2	0.0	232
CBr ₂ —CBr ₂					2²	92.4	92.4	0.0	232	24.5	24.6	-0.1	29.7	29.8	-0.1	232
CHF=CCI					I	75.1	74.9	0.2	233	18.3	18.2	0.1	26.5	26.4	0.1	233
CF ₂ =CHBr					1	75.2	75.6	-0.4	234	17.6	17.8	-0.2	26.2	26.2	0.0	234
CF ₂ =CHF	-115.1	-115.1	0	235	1	6.69	70.1	-0.2	236	16.5	16.5	0.0	25.6	25.6	0.0	236
CHCI=CCI ²					1	77.6	77.5	0.1	237	19.3	19.3	0.0	26.9	26.9	0.0	237
CHBr=CBr ₂					1	85.7	85.9	-0.2	238	20.5	20.4	0.1	:			238
CH ₂ =CFCI					-	67.6	67.4	0.2	239	15.3	15.4	-0.1	24.4	24.3	0.1	239
CH2=CF2	-80.8	-71.5	-9.3	235		÷				÷			÷			
CH2=CCI2	0.3	4.2	-3.9	240	7	69.0	68.3	0.7	241	16.1	16.5	0.4	24.7	24.7	0.0	241
CHCI=CHCI (av)					2	69.3	69.4	-0.1	192	15.8	15.8	0.0	24.6	24.6	0.0	192
CHBr=CHBr cis					7	75.8	75.2	0.6	238	16.5	16.2	0.3	:			238
CH ₂ =CHCI	8.1	8.1	0	242	-	63.2	63.0	0.2	243, 244	12.9	13.0	-0.1	22.4	22.4	0.0	243, 244
CH ₂ —CHBr	18.7	18.7	0	245	1	66.0	62.9	0.1	243, 244	13.4	13.2	0.2	22.5	22.5	0.0	243, 244
CH ₂ =CHI					-	68.1	68.1	0	244	13.9	13.9	0	22.7	22.7	0	244
CH ^s C≡CCI					e	68.0	68.0	[0]	246	17.2	17.2	[0]	27.0	27.0	<u>0</u>	246
CH ₃ C=CBr					e	70.7	70.7	[0]	246	17.6	17.6	0	27.1	27.1	<u>0</u>	246
CH _s C=CI					ŝ	72.4	72.4	0	246	17.8	17.8	[0]	27.2	27.2	0	246
C ₆ H ₆ F	-27.1	-26.3	-0.8	247	2	72.4	72.2	0.4	248	22.7	22.5	0.2	47.6	47.5	0.1	248
o-C ₆ H ₄ F ₂	-68.9	-67.4	-1.5	249	2	77.3	0.77	0.3	250, 251	25.6	25.6	0.0	49.5	49.8	-0.3	251
$m-C_6H_4F_2$	-72.6	-72.4	-0.2	249	7	76.7	77.0	-0.3	251	25.5	25.6	-0.1	49.7	49.8	-0.1	251
p-C ₆ H ₄ F ₂	-71.9	-72.4	0.5	249	22	75.6	75.6	0.0	251	25.7	25.6	0.1	49.7	49.8	-0.1	251
p-FC ₆ H ₄ CH ₃	-34.6	-34.2	-0.4	252	3×2	81.3	81.4	-0.1	252	27.9	28.2	-0.3	58.6	58.1	0.5	252
C _i H ₅ CF ₃	-140.7	-140.7	0	253	3×2	89.2	89.2	0	253	31.4	31.4	[0]	62.8	62.8	0	253
4,4-FC ₆ H ₄ C ₆ H ₄ F	-47.7	-48.7	1.0	254												
2,2-FCiHiCiHiF	-40.0	C./4-	9.0 9.0	402	~	c 1 t		3	070			101	5		3	010
	C.21	1.21	7.0	231 UVL	4	7.01	7.01	Σ	740	0.07	0.07	2	41.7	41.7	Σ	047
	1.1	0°1		355												
	2.1	9.0 9	- -	336												
o-CIC6H4EI	0.1-		1.2-	256												
p-CICeH4Et	- <u>-</u>	-0.1	+ +	CC7												
2,5'-Cl ₂ C ₆ H ₃ CH=CH ₂	21.4	21.6	-0.2	240												
2,2'-ClC ₆ H ₄ C ₆ H ₄ Cl	30.4	30.5	-0.1	254												
4,4'-CIC ₆ H ₄ C ₆ H ₄ Cl	28.8	29.3	-0.5	254						•	•	ł				
CeH _s Br	27.2	27.2	0	256		6.11	9.17	0	248	24.0	24.0	<u>0</u>	48.0	48.0	0	248
C ₆ H ₆ CH ₂ Br	12.1	15.1	0	257									:	:		
CeHl	40.5	40.5	0	258, 259		80.0	80.0	0	248	24.2	24.2	0	48.0	48.0	0	248
C ₆ H ₆ CH ₂ I	30.4	30.4	<u></u>	260												
C,F,	-224.0	-226.8	2.8	261												
CcCle	-8.3	-9.6	1.3	240												

 $\Delta H_{298}^{\circ} = 11.7 \text{ kcal/mole}$ $\Delta S_{298}^{\circ} = 9.6 \text{ gibbs/mole}$

 $\Delta H_{298}^{\circ} = 0.4 \text{ kcal/mole}$ $\Delta S_{298}^{\circ} = 4.9 \text{ gibbs/mole}$

Writing equilibria 1 and 2 into group notation and subtracting vields

$$[\Delta(1) - \Delta(2)]/2 = [C_d(C_d)(F) - C_d(C)(F)] - [C_d(C_d)(C) - C_d(C)_2]$$
(3)

where we have assumed identical ring strains. Both quantities in brackets on the right-hand side (rhs) of eq 3 are expected to be approximately equal, *i.e.*, rhs(3) \cong 0. This is true for hydrocarbons (H replaces F in eq 3 for which rhs(3) = -0.15kcal/mole from enthalpies and +0.3 gibbs/mole from entropies. Equilibria 1 and 2, however, yield rhs(3) = 5.2 kcal/moleand 2.35 gibbs/mole for enthalpies and entropies, respectively. These large differences are hard to rationalize with group additivity.

As a result of the above-mentioned contradictions in group additivity for haloalkenes, we feel that the group contributions to ΔH°_{298} for these compounds should be used with caution, particularly when combining groups with large differences in polarity. Estimates of S°_{298} and C_{p}° , on the other hand, are seen in Table XXV to be accurate to ± 1.0 and ± 0.5 gibbs/ mole, respectively.

The estimates of $\Delta H_{\rm f}^{\circ}_{238}$, S°_{238} , and $C_{\rm p}^{\circ}$ for haloarenes are found accurate to ± 2.0 kcal/mole, ± 1.0 gibbs/mole, and ± 0.5 gibbs/mole, respectively.

This section prepared by S. W. Benson and A. S. Rodgers.

- (200) J. J. Martin, J. Chem. Eng. Data, 5, 334 (1960).
- (201) Reference 135, Sept 1965.
- (202) R. A. Carney, E. A. Piotrowski, A. G. Meister, J. H. Braun, and F. F. Cleveland, J. Mol. Spectry., 7, 209 (1961).
- (203) R. Theimer and J. R. Nielsen, J. Chem. Phys., 27, 887 (1957).
- (204) C. R. Ward and C. H. Ward, J. Mol. Spectry., 12, 289 (1964).
- (205) J. R. Nielsen H. H. Claasen, and D. C. Smith, J. Chem. Phys., 18, 1471 (1950).
- (206) H. W. Thompson and R. B. Temple, J. Chem. Soc., 1428 (1948). (207) J. R. Lacher, A. Kianpour, and J. D. Park, J. Phys. Chem., 60, 1454 (1956).
- (208) R. H. Harrison and K. A. Kobe, J. Chem. Phys., 26, 1411 (1957). (209) K. S. Pitzer and J. L. Hollenberg, J. Am. Chem. Soc., 75, 2219
- (1953).
- (210) D. C. Smith, R. A. Saunders, J. R. Nielsen, and E. E. Ferguson, J. Chem. Phys., 20, 847 (1952).
- (211) L. Smith, L. Bjellerup, S. Krook, and H. Westermark, Acta Chem. Scand., 7, 65 (1953).
- (212) J. C. M. Li and K. S. Pitzer, J. Am. Chem. Soc., 78, 1077 (1956).
- (213) J. B. Conn, G. B. Kistiakowsky, and E. A. Smith, ibid., 60, 2764 (1938). (214) G. C. Sinke and D. R. Stull, J. Phys. Chem., 62, 397 (1958).
- (215) E. Catalano and K. S. Pitzer, ibid., 62, 873 (1958).
- (216) J. Davies, J. R. Lacher, and J. D. Park, Trans. Faraday Soc., 61, 2413 (1965).
- (217) J. H. S. Green and D. J. Holden, J. Chem. Soc., 1794 (1962).
- (218) C. L. Angell, J. Chem. Eng. Data, 9, 341 (1964).
- (219) K. E. Howlett, J. Chem. Soc., 1784 (1955).
- (220) L. Bjellerup, Acta Chem. Scand., 15, 121 (1961).

VII. Sulfur, Boron, Phosphorus **Compounds and Organometallic** Compounds

This section extends the group additivity rules to include organometallic (Sn, Hg, Zn, Cd, Ge, Al, Pb, Ti, V, and Cr) and organononmetallic (S, B, P) compounds. Table XXXVIII lists the best group values and ring corrections. The group values in the table are based on the most stable conformation. We found gauche corrections only necessary for the organoboron compounds. In fact, organosulfur compounds indicate no gauche interactions. This suggests that these conformational interactions are only important for the first-row elements.

- (221) J. R. Lacher, T. J. Billings, D. E. Campion, K. R. Lea, and J. D. Park, J. Am. Chem. Soc., 74, 5291 (1952).
- (222) W. D. Good, D. R. Douslin, D. W. Scott, A. George, J. L. Lacina, J. P. Dawson, and G. Waddington, J. Phys. Chem., 63, 1133 (1959).
- (223) W. D. Good, D. R. Douslin, and J. P. McCullough, ibid., 67, 1312 (1963).
- (224) S. W. Benson and A. Amano, J. Chem. Phys., 36, 3464 (1962).
- (225) S. W. Benson and A. Amano, ibid., 37, 197 (1962).
- (226) D. E. Mann and E. K. Plyler, ibid., 23, 1989 (1955).
- (227) J. R. Nielsen and R. Theimer, ibid., 30, 98 (1959).
- (228) J. R. Nielsen and R. Theimer, *ibid.*, 30, 103 (1959).
- (229) D. E. Mann, N. Acquista, and E. K. Plyler, ibid., 21, 1949 (1953).
- (230) D. E. Mann, N. Acquista, and E. K. Plyler, ibid., 22, 1199 (1954).
- (231) Reference 133, Sept 1964.
- (232) D. E. Mann, J. H. Meal, and E. K. Plyler, J. Chem. Phys., 24, 1018 (1956).
- (233) C. J. Muellemann, K. Ramaswamy, F. F. Cleveland, and S. Sundaram, J. Mol. Spectry., 11, 262 (1963).
- (234) R. Theimer and J. R. Nielsen, J. Chem. Phys., 27, 264 (1957).
- (235) V. P. Kolesov, A. M. Martynov, S. M. Shetekher, and S. M. Skuratov, Russ. J. Phys. Chem., 36, 1118 (1962).
- (236) D. E. Mann, N. Acquista, and E. K. Plyler, J. Chem. Phys., 22, 1586 (1954).
- (237) G. Allen and H. T. Berstein, Can. J. Chem., 32, 1044 (1954).
- (238) J. C. Evans and H. J. Berstein, ibid., 33, 1171 (1955).
- (239) D. E. Mann, N. Acquista, and E. K. Plyler, J. Chem. Phys., 23, 2122 (1955).
- (240) G. C. Sinke and D. R. Stull, J. Phys. Chem., 62, 397 (1958).
- (241) D. L. Hildebrand, R. A. McDonald, W. R. Kramer, and D. R. Stull, J. Chem. Phys., 30, 930 (1959).
- (242) J. R. Lacher, H. B. Gottlieb, and J. D. Park, Trans. Faraday Soc.,
- 58. 2348 (1962). (243) C. W. Gullikson and J. R. Nielsen, J. Mol. Spectry., 1, 155 (1957).
- (244) R. E. Richards, J. Chem. Soc., 1931 (1948).
- (245) J. R. Lacher, A. Kianpour, P. Montgomery, H. Knedler, and J. D. Park, J. Phys. Chem., 61, 1125 (1957).
- (246) P. N. Daykin, S. Sundaram, and F. F. Cleveland, J. Chem. Phys., 37, 1087 (1962).
- (247) W. D. Good and D. W. Scott, Pure Appl. Chem., 2, 77 (1961).
- (248) D. H. Whiffen, J. Chem. Soc., 1350 (1956).
- (249) W. D. Good, J. L. Lacina, D. W. Scott, and J. P. McCullough, J. Phys. Chem., 66, 1529 (1962).
- (250) D. W. Scott, J. F. Messerly, S. S. Todd, I. A. Hossenl Osborn, and J. P. McCullough, J. Chem. Phys., 38, 532 (1963). . Hossenlopp, A.
- (251) J. H. S. Green, W. Kynaston, and H. M. Paisley, J. Chem. Soc., 473 (1963).
- (252) D. W. Scott, J. F. Messerly, S. S. Todd, I. A. Hossenlopp, D. R. Douslin, and J. P. McCullough, J. Chem. Phys., 37, 867 (1962).
- (253) D. W. Scott, D. R. Douslin, J. F. Messerly, S. S. Todd, I. A. Hossenlopp, T. C. Kincheloe, and J. P. McCullough, J. Am. Chem. Soc., 81, 1015 (1959).
- (254) N. K. Smith, G. Gorin, W. D. Good, and J. P. McCullough, J. Phys. Chem., 68, 940 (1964).
- (255) W. N. Hubbard, J. W. Knowlton, and H. M. Huffman, ibid., 58, 396 (1954). (256) K. Hartley, H. Pritchard, and H. Skinner, Trans. Faraday Soc.,
- 47, 254 (1951), combined with $\Delta Ht^{\circ}(C_{6}H_{6}I)_{11q}$.
- (257) S. J. Ashcroft, A. S. Carson, and J. B. Pedley, ibid., 59, 2713 (1963).
- (258) L. Smith, Acta Chem. Scand., 10, 884 (1956).
- (259) L. S. Carson, E. M. Carson, and B. Wilmshirst, Nature, 170, 320 (1952).
- (260) R. Walsh, D. M. Golden, and S. W. Benson, J. Am. Chem. Soc., 88, 650 (1966).
- (261) J. D. Cox, H. A. Gundry, and A. J. Head, Trans. Faraday Soc. 60, 653 (1964).

⁽¹⁹⁹⁾ N. W. Luft, J. Chem. Phys., 22, 153 (1954).

This reduction in next-nearest-neighbor interaction is coincident with a 20-30% increase in the bonding distance. Bond lengths in ångströms for the first- and second-row elements are, respectively, C-B, 1.56; C-C, 1.54; C-N, 1.47; C-O, 1.47; C-F, 1.38; and C-Al, 1.92; C-Si, 1.87; C-P, 1.87; C-S, 1.82; C-Cl, 1.77.

The utilization of these group values is not restricted solely to the obvious predicting of thermochemical properties of unmeasured compounds. The concept of group additivity of molecular properties allows a check of the internal consistency of the measured thermochemical data of related compounds. This is a plausible test of the reliability of the experimental thermochemical data. As an example, the inconsistencies in the gaseous heat of formation of organosilicon compounds are made apparent by the failure to construct a reproducible set of group values. This inconsistency is evident in the values of the groups $[C-(Si)(C)(H)_2] - [C-(Si)(H)_3]$ and $[Si-(C)(H)_3]$ + $[C-(Si)(C)(H)_2]$. The former group has the values: +18.08 kcal/mole in Si(CH₃)₄ - Si(C₂H₅)₄; +17.08 kcal/mole in SiH(CH₃)₈ - SiH(C₂H₅)₈; +12.58 kcal/mole in SiH₂(CH₃)₂ - $SiH_2(C_2H_5)_2$; +13.90 kcal/mole in $SiH_3CH_3 - SiH_3C_2H_5$; and the latter group has the values: -17.92 kcal/mole in C₂H₅SiH₈; -8.94 kcal/mole in (CH₃)₂CHCH₂SiH₃; -11.02 kcal/mole in CH₂(CH₂)₃SiH₂. Similarly, a correlation of the heat of formation of $(CH_3)_4M$ and $(C_2H_5)_4M$ and $(C_2H_5)_4M$ compounds. where M = Si, Ge, Sn, Pb, by Telnoi and Rabinovitch²⁶² demonstrates that the heat of formation of tetramethylsilicon is incorrect.262a O'Neal and King263 found cases where the reported thermochemical data of the organosilicon compounds deviated appreciably from the less stringent bond additivity rule. They concluded that large errors in the heat of combustion are not unusual, and additional thermochemical data of greater accuracy are needed.

A. ORGANOSULFUR COMPOUNDS

1. Alkylthiols

The uncertainties in the predicted $\Delta H_1^{\circ}{}_{288}$, $S^{\circ}{}_{288}$, and $C_p^{\circ}{}_{300}$ are ± 0.2 kcal/mole, ± 0.2 eu, and ± 0.1 gibbs/mole, respectively. The uncertainty in the heat capacity at high temperatures (800°K) increases to ± 0.5 gibbs/mole.

2. Thiaalkanes

The uncertainty in the predicted $\Delta H_1^{\circ}{}_{298}$, $S^{\circ}{}_{298}$, and $C_p^{\circ}{}_{300}$ are ± 0.3 kcal/mole, ± 0.2 eu, and ± 0.3 gibbs/mole, respectively. The uncertainty in the heat capacity at high temperatures (800°K) increases to ± 0.5 gibbs/mole. The disagreement between calculated and observed values of $S^{\circ}{}_{298}$ and $C_p^{\circ}{}_{300}$ for the compound (CH₃)₂CHSCH(CH₃)₂ (see Table XXVI^{284–279})

suggests that there is an error in the observed values.

3. Aromatic Sulfides

The uncertainty in the predicted $\Delta H_{\rm f}^{\circ}_{298}$ is ± 0.3 kcal/mole.

4. Thiaalkanes

The uncertainty in the predicted $\Delta H_{t_{298}}^{\circ}$ is ± 0.2 kcal/mole.

5. Dithiaalkanes

The uncertainties in the predicted $\Delta H_i^{\circ}_{298}$, S°_{298} , and $C_p^{\circ}_{200}$ are ± 0.5 kcal/mole, ± 0.4 eu, and ± 0.2 gibbs/mole, respectively. At higher temperatures (800°K), the uncertainty in the heat capacity increases to ± 0.7 gibbs/mole.

6. Sulfoxides

The uncertainty in the predicted $\Delta H_t^{\circ}_{280}$ is ± 1.0 kcal/mole. This is larger than the reported experimental precision, suggesting systematic errors.

7. Sulfones

The uncertainty in the predicted $\Delta H_t^{\circ}_{298}$ is ± 2.0 kcal/mole for aliphatic, ± 2.8 kcal/mole for alkene, and ± 1.9 kcal/mole for aromatic sulfones. Consequently, the inconsistencies in the heats of formation are considerably larger than the reported experimental precision. The gas-phase heats of formation were derived from the standard heats by combining with the relevant heats of fusion, vaporization, and sublimation. In the case of the sulfones, these latter quantities have been estimated by empirical methods. It is quite possible that the inconsistencies in the group values arise from these crude estimates.

8. Vinyl Sulfones

The group additivity rule indicates that the reported heat of formation of p-tolylprop-1-ene sulfone (see Table XXVI) is inconsistent with the heats of formation of the other members of the homologous series.

9. Thiolacetic Acid

The uncertainty in the predicted $\Delta H_i^{\circ}_{298}$ is ± 0.9 kcal/mole.

10. Thiophenes and Thiolenes

The uncertainties in the predicted $\Delta H_t^{\circ}_{298}$, S°_{298} , $C_p^{\circ}_{300}$, and $C_p^{\circ}_{800}$ for the thiophenes are ± 0.1 kcal/mole, ± 0.8 eu, ± 0.4 gibbs/mole, and 0.6 gibbs/mole, respectively.

(275) S. Sunner, Svensk. Chem. Tidskr., 58, 71 (1946).

- (277) A. P. Claydon and C. T. Mortimer, J. Chem. Soc., 3212 (1962).
- (278) J. V. Davies and S. Sunner, Acta Chem. Scand., 16, 1870 (1962).
- (279) D. W. Scott, J. Chem. Eng. Data, 4, 246 (1959).

⁽²⁶²⁾ V. I. Telnoi and I. B. Rabinovich, Russ. J. Phys. Chem., 39, 1108 (1965).

⁽²⁶²a) Expressing the heat of formation of $(CH_3)_4M$ and $(CH_3CH_2)_4M$ in terms of their groups and combining, we find the relation $\Delta H^c[(CH_3CH_2)_4M] = \Delta H^c[(CH_3)_4M] + 4\{[C-(M)(C)(H)_2] - [C-(M)-(H)_3] + [C-(C)(H)_3]\}$. If we invoke bond additivity rules, the linear correlation $\Delta H^c[(CH_3CH_2)_4M] = \Delta H^c[(CH_3)_4M]$ + constant is obtained. The error in this relation should not be larger than ± 5 kcal/mole (see ref 2).

⁽²⁶³⁾ H. E. O'Neal and M. A. King, Inorg. Chem., 5, 435 (1966).

⁽²⁶⁴⁾ H. Mackle and P. A. G. O'Hare, Tetrahedron, 19, 961 (1963).

⁽²⁶⁵⁾ D. W. Scott and J. M. McCullough, U. S. Bureau of Mines Bulletin 595, U. S. Government Printing Office, Washington, D. C., 1961.

⁽²⁶⁶⁾ M. Mansson and S. Sunner, Acta Chem. Scand., 16, 1863 (1962).

⁽²⁶⁷⁾ D. W. Scott and G. A. Crowder, J. Chem. Phys., 46, 1054 (1967).

⁽²⁶⁸⁾ J. P. McCullough, H. L. Finke, W. N. Hubbard, S. S. Todd, J. F. Messerly, D. R. Douslin, and G. Waddington, J. Phys. Chem., 65, 784 (1961).

⁽²⁶⁹⁾ W. D. Good and B. L. DePrater, ibid., 70, 3606 (1966).

⁽²⁷⁰⁾ H. Mackle and R. T. B. McClean, Trans. Faraday Soc., 59, 669 (1963).

⁽²⁷¹⁾ H. Mackle, D. V. McNally, and W. Steel, Paper 9, ref 105 above.

⁽²⁷²⁾ S. Sunner, Acta Chem. Scand., 9, 837 (1955).

⁽²⁷³⁾ S. Sunner, ibid., 9, 847 (1955).

⁽²⁷⁴⁾ G. B. Guthrie, Jr., D. W. Scott, and G. Waddington, J. Am. Chem. Soc., 76, 1488 (1954).

⁽²⁷⁶⁾ R. E. Dininny and E. L. Pace, J. Chem. Phys., 32, 805 (1960).

IAXX	
Table	

Organosulfur Compounds

Compound	Obsd	Estd	Δ	Rej	п, с	Obsd	Estd	Δ	Ref	Obsd	300 Estd	۷	Obsd Cp	Estd	Δ	Ref
CH ₃ SH	-5.46	-5.46	[0.0]	264	ε	60.96	60.96	[0.0]	265	12.05	12.05	[0.0]	20.32	20.32	[0.0]	265
CH ₅ CH ₅ SH	- 10.99	-11.11	+0.19	264 264	3	70.77	70.84	+0.07	265	17.44	17.43	+0.01	31.83	32.58	-0.75	265
CH ₃ (CH ₂) ₂ SH	-10.87 -16.19	-16.06	+0.24 -0.13	265 264	3	80.40	80.26	+0.14	265	22.75	22.93	-0.18	43.60	43.65	-0.05	265
CH ₃ (CH ₃) ₃ SH	-16.06 -21.02	-21.01	[0.0] - 0.01	265 264	3	89.38	89.68	[0.0]	265	28.37	28.43	-0.06	55.68	54.72	+0.96	265
CH ₃ (CH ₃),SH	-20.89 -25.88 -26.70 -75.94	-25.96	+0.12 +0.08 -0.74	264	e	99.28	99.10	+0.18	295	33.91	33.93	-0.02	66.78	65.79	+0.99	268
CH ₃ (CH ₂) ₅ SH CH ₃ (CH ₂) ₅ SH	-30.82	-30.91 -35.86	+0.09	ରୁ ଛୁ	::											
CH ₃ (CH ₂) ₂ CH)SH ((CH ₃) ₂ CH)SH	-50.57 -18.19	-50.71 -18.18	+0.14 -0.01	269 264	32	77.51	77.88	-0.37	264	23.04	23.09	-0.05	43.26	43.24	+0.02	264
(CH ₃) ₂ CH CH ₂ SH (CH ₃)(CH ₃ CH ₃)CHSH	-23.21 -23.12	-23.09 -23.13	-0.12 +0.01	264 264		86.73 87.65	87.01 87.30	-0.28 +0.35	264 267	28.41 28.64	28.16 28.59	+0.25 +0.05	53.77 54.29	54.91 54.31	-1.14 -0.02	264 264
(CH ₁),CSH	-26.14	-26.17	+0.03	264	34	80.79 80.78	80.83	-0.04	264	29.04 29.05	29.00	+0.04	55.53 54.36	55.08	+0.45 -0.72	264
(CH ₃) ₂ CH(CH ₂) ₂ SH (CH ₂) ₂ CH ₅ CH ₃)CSH	-27.41 -30.34	28.04 -31.12	0.63 +0.78	264 264		92.48	92.43	+0.05	264	34.46	34.50	-0.04	66.28	66.15	+0.13	264
HS(CH ₂) ₂ SH	-2.23	-2.06	-0.17	266	:									:		:
HS(CH2),SH HS(CH2),SH	-7.03 -12.03	-7.01	-0.02	266 266	::				÷					: :		::
HS(CH ₂) ₅ SH	-16.87	-16.91	+0.04	266	:				:					:		:
HS	-11.42 -22.90	-11.52 -22.77	+0.10 -0.13	264 264	:::	86.38 87.37	86.39 87.31	-0.01 +0.06	 264 267	25.94 32.13	25.21 31.81	+0.73 +0.32	58.61 75.19	58.55 73.37	+0.06 +1.82	264 267
HS	-22.85		-0.08	294		;	;	. 1					î			
HS	26.66	26.66	[0.0]	264	:	80.51	80.51	[0.0]	264	25.22	25.22	[0.0]	51.59	51.59	[0.0]	264
The second secon	21.9	21.90	[0.0]	264	:				:				,			: :
(CH ₃) ₂ S CH ₂ CH ₂ CH	-8.94	-8.65	-0.29 +0.08	264, 265 264, 265	3² × 2 3²	68.32 79.62	68.25 79.50	+0.07	264, 265 264, 265	17.77 22.82	17.37 22.75	+0.40	31.59 42.93	31.45 43.71	+0.14	264, 265 264, 265
CH ₃ S(CH ₂) ₂ CH ₃	- 19.51	-19.25	-0.26	264, 265	32	88.84	88.92	-0.08	264, 265	28.17	28.26	-0.09	54.45	54.78	-0.33	264, 265
(CH ₃) ₂ CHSCH ₃	-21.58	-21.37	-0.21	264, 265	3ª	85.87	86.52	-0.65	264, 265	28.82	28.41	+0.41	54.89	54.37	-0.52	264, 265
CH ₃ S(CH ₃) ₅ CH ₅	-24.39 -24.20	-24.20	-0.19 [0.0]	264, 265	32	98.43	98.34	+0.09	264, 265	33.79	33.75	+0.04	66.53	65.85	+0.68	264, 265
CH ₃ SC(CH ₃) ₃	-28.93	-29.36	+0.43	264, 265	35	89.21	89.49	-0.28	264, 265	34.66	34.22	+0.44	66.74	66.21	+0.53	264, 265
CH ₃ S(CH ₂),CH ₃	-29.10	-29.15	+0.05	264, 265	:				:							÷
CH ₃ CH ₃ SCH ₃ CH ₃ CH ₃	-19.92	-19.95	+0.03	264, 265	$3^{2} \times 2$	87.96	88.01	-0.05	264, 265	28.09	28.13	-0.04	54.91	55.97	-1.06	264, 265

CH ₃ CH ₃ SCH ₂ CH ₃ CH ₃	-24.97	-24.90	-0.07	264, 265	32	98.97	98.80	-0.17	264, 265	33.40	33.63	-0.23	66.68	67.04	-0.36	264, 265
(CH ₃) ₂ CHSCH ₂ CH ₃	-28.0	-27.02	+0.98	264, 265	:											
CH ₃ CH ₂ S(CH ₂) ₅ CH ₅	-30.3	-29.85	+0.45	264, 265	:				:							:
(CH ₃),CSCH ₂ CH	-35.3	-35.01	+0.29	264, 265	:				:							:
CH ₃ (CH ₂) ₂ S(CH ₂) ₂ CH,	-29.74	-29.85	+0.11	264, 265	$3^2 \times 2$	107.22	106.55	+0.67	264, 265	38.71	39.13	-0.42	78.45	78.11	+0.34	264, 265
	-29.93		-0.08					1					;			
	-33.84 -34 10	- 34.09	7.0+ 10.0-	204, 202	3* X 2	90.96	102.08	70.7-	204, 202	40.04	39.45	+1.20	71.12	67.11	+0.17	204, 202
	-33.78		+0.31													
CH ₃ (CH ₃) _S (CH ₃) _{CH}	-39.96	-39.75	-0.21	264.265	$3^2 \times 2$	125,84	125 69	+0 15	264 265	49 70	\$0.13	-0 43	100 58	100.25	11 33	264 265
(CH3), CHCH, SCH, CH(CH3),	-42.9	-43.91	+1.01	264, 265	4 < : 5			21.0		2	c1.00	6	00.001	100.101		CD7 (LO7
(CH), CSC(CH,),	-49.6	- 50.07	+0.47	264.265					:							
CH4(CH4),S(CH4),CH.	-49.0	-49.65	+0.65	264, 265	:				:							
	-53.0	-53 81	10.01	264 265	:				:							:
CH-SCH.	23.5	73 78	10.0	264 265	:				:							•
C.H.CH.SCH.	10.01	18 71	0, 00	264 265	:				÷							:
C.H.SCHLOH.	18.1	18 13	10.2	264 765	:				:							:
	t.o.	12 06	17.04	207 407	:				:							:
	14.4	00.61		204,202	:				÷							÷
CeH ₅ SCeH ₅	5	05.00	[0.0]	264, 265	:				:							•
CiHiCH2SCH2CiH	46.1	46.07	+0.03	264, 265	:				:							•
CH2=CHCH2SCH2CH2CH2	4.3	4.18	+0.12	264, 265	÷				:							:
CH2=CHCH2SC(CH3)3	-11.0	-10.88	-0.12	264, 265	:				÷							:
CH ₃ SSCH ₃	-5.71	-6.06	+0.35	270	$3^2 \times 2$	80.46	79.84	+0.62	270	22.61	22.84	-0.23	37.66	36.80	+0.86	270
CH ₃ CH ₂ SSCH ₂ CH ₃	-17.78	-17.36	-0.42	270	$3^2 \times 2$	99.07	09.6 6	-0.53	270	33.91	33.60	+0.31	60.19	61.32	-1.13	270
CH ₃ (CH ₂) ₂ SS(CH ₂) ₂ CH ₃	-27.78	-27.26	-0.52	270	$3^2 \times 2$	118.30	118.44	-0.14	270	44.50	44.60	-0.10	83.70	83.46	+0.24	270
	-27.95		-0.69													
CH ₃ (CH ₂) ₃ SS(CH ₂) ₅ CH ₃	-37.63	-37.16	-0.47	270	:				:							
((CH ₃) ₂ CHCH ₂ S) ₂	-40.61	-41.32	+0.71	270	:				:							
(CH ₃) ₃ CSSC(CH ₃) ₃	-47.05	47.48	+0.43	270	:				:							
C ₆ H ₅ SSC ₆ H ₅	58.4	58.40	[0.0]	270	:				:							:
CH ₃ (SO)CH ₃	-34.57	-34.57	[0.0]	264, 265	$3^{2} \times 2$	73.20	73.20	[0.0]	264, 265	21.26	21.26	[0.0]	37.02	37.02	[0.0]	264, 265
CH ₃ CH ₂ (SO)CH ₂ CH ₃	-49.0	-50.01	+1.01	264, 265	$3^2 \times 2$			•								•
CH ₃ CH ₂ (SO)C(CH ₃) ₈	-65.5	-65.50	[0.0]	264, 265					:							:
CH ₃ (CH ₂) ₂ (SO)(CH ₂) ₂ CH ₃	-60.9	- 59.91	-0.99	264, 265	:				:							:
CH2=CHCH2(SO)CH2CH	- 24.7	-24.71	[0.0]	264, 265	:				:							:
C ₆ H ₅ (SO)C ₆ H ₅	25.6	25.60	[0.0]	264, 265	:				:							:
CH ₃ (SO ₂)CH ₃	-89.9	-89.90	[0.0]	264, 265	$3^2 \times 2$	76.0	76.0	[0.0]	264, 265	23.9	23.9	[0.0]				264, 265
CH ₃ (SO ₂)CH ₂ CH ₃	-98.7	-97.58	-1.12	264, 265	:				:							:
CH ₃ (SO ₃)(CH ₃) ₃ CH ₃	-110.0	-107.48	-2.52	264, 265												
CH ₃ (SO ₃)(CH(CH ₃) ₂)	-104.2	-102.60	-1.60	264, 265	:											
	117 2	110 67	1 63	376 176												
	-112.3	-110.0/	60.1-	707 707	:				÷							:
CH ₃ CH ₂ (SO ₂)CH ₂ CH ₃	-103.8	-105.26	+1.46	264, 265	:				:							:
CH ₃ CH ₂ (SO ₂)C(CH ₃) ₃	-117.6	-118.35	+0.75	264, 265	:				:							:
(CH ₃) ₂ CH(SO ₂)CH(CH ₃) ₂	-112.1	-115.30	+3.20	264, 265	÷				:							:
CH ₃ (CH ₂) ₃ (SO ₂)(CH ₂) ₅ CH ₃	-122.2	-125.06	+2.86	264, 265	:				÷							:
((CH ₃) ₂ CHCH ₂) ₂ (SO ₂)	-126.3	-129.22	+2.92	264, 265	:				:							:
(CH ₃) ₅ C(SO ₂)C(CH ₄) ₃	-129.7	-131.44	+1.74	264, 265	:				:							:
			•													

					-	Organosulfi	ur Compou	spu								
Compound	Dbsd	f°208 Estd	۵	Rej	п, б	Obsd	Estd	۵	Ref	Obsd C _p °	BOD Estd	Δ	Obsd	Estd	۷	Ref
CH ₂ =CHCH ₃ (SO) ₂ CH ₃	-73.5	-72.11	-1.39	264, 265												
CH ₃ =CHCH ₂ (SO ₂)CH ₂ CH ₃	-78.4	-79.79	+1.39	264, 265	:				:							
CH ₁ (SO ₂)C ₆ H ₅	-63.4	-63.57	+0.17	264, 265	:				÷							:
CH ₃ (SO ₂)CH ₂ C ₆ H ₅	-68.0	-63.35	-4.65	264, 265	:				÷							:
C ₆ H ₆ CH ₂ (SO ₂)CH ₂ C ₆ H ₆	-36.8	-36.80	[0.0]	264, 265	÷				:							÷
C ₆ H ₆ (SO ₂)C ₆ H ₆	-28.7	-30.98	+2.28	264, 265	:											:
CH ₃ C ₆ H ₄ (SO ₂)C ₆ H ₄ CH ₂	-49.0	-46.72	-2.28	264, 265	:				:							:
CH ₃ C ₆ H ₄ (SO ₂)CH ₃	-71.6	-71.44	-0.16	264, 265	:				:							:
C ₆ H ₆ (SO ₂)(SO ₂)C ₆ H ₆	-114.9	-114.90	[0.0]	264, 265	:				÷							:
CH ₂ =CHSO ₃ CH=CH ₂	36.0	-36.0	[0.0]	271	÷											
C ₆ H ₅ SO ₂ CH=CH ₂	-30.8	-31.0	+0.2	271	:											
CH ₃ C ₆ H ₄ SO ₂ CH=CH ₂	-38.7	-38.9	+0.2	271	:											
CH ₁ C ₆ H ₄ SO ₂ CH=CHCH ₁	-49.9	-46.6	-3.3	271	÷											
CH ₃ C ₆ H ₅ O ₅ C(CH ₁)C ₆ H ₆ =CH ₂	-47.0	-47.0	[0.0]	271	÷											
CH ₃ C ₆ H ₅ O ₂ CH=CHC ₆ H ₆ (trans)	-16.5	-16.2	-0.3	271	:											
CH ₃ C ₆ H ₅ O ₅ CH=CHC ₆ H ₆ (cis)	-14.3	-15.2	+0.9	271	:											
C _i H _i SO ₂ CH=CHC _i H _i	-8.3	-8.3	0.0	271	:											
((CH ₃ CH ₃) ₂ N) ₂ S ₂	-16.8	-16.72	-0.08	277	:				:							:
((CH ₃ CH ₂) ₂ N) ₂ SO ₂	-139.0	-139.0	[0.0]	277	:				:							;
((CH ₃ CH ₂) ₂ N) ₂ SO	-66.2	-66.28	+0.08	277	:				:							:
CH ₃ (CO)SH	-43.5	-43.05	-0.45	273	:				•							:
	-42.6		+0.45	272	:				:							:
CF ₃ SH				:	÷	69.45	69.45	[0.0]	276							:
NH ₂ CSNH ₂	-6.0	-6.00	[0.0]	264, 265	7	72.44	72.44	[0.0]	264, 265	17.72	17.73	[0.0]	29.06	29.07	[0.0]	264.275
CH ₃ NCS	+27.1	+27.1	[0.0]	272, 273	3	69.30	69.30	[0.0]	300	15.70	15.70	[0.0]	25.87	25.87	[0.0]	300
Sa	24.35	24.32	[0.0]	274	×	102.76	102.76	[0.0]	274	37.25	37.28	[0.0]	42.62	42.64	[0.0]	274
ŝ	-61.1	-61.1	[0]	264, 265	:											
S CS	19.93	19.93	[0]	264, 265	7	61.01	61.01	[0]	264, 265	12.90	12.90	[0]	25.61	25.61	[0]	264, 265
S Cur	10.99	12.86	-1.87	264, 265	÷				÷							:
S_CH _s	2.73	4.87	-2.14	264, 265	:											:
CH,																
CH ₃ (cis)	2.73	6.79	-4.06	264, 265	:				:							÷
(trans) S CHa	0.89	5.79	-4.90	264, 265	÷				•							÷
CH ₅	-5.09	-1.10		264, 265					•							÷

S. W. Benson, et al.

Table XXVI (Continued)

264, 265	264, 265	264, 26	÷	264	264	264 279	:	÷
[0]	[0]	[0]		+0.48	-1.12	-0.75 -0.21		
36.40	47.66	64.00		35.53	45.31	46.70		
36.40	47.66	64.00		36.01	46.43	45.95 46.49		
[0]	[0]	[0]		+0.39	-0.26	-0.46 -0.32		
16.66	21.85	26.03		17.13	22.66	23.26		
16.66	21.85	26.03		17.52	22.92	22.80 22.94		
264, 265	264, 265	264, 265	•	264	22.92	264 279	:	÷
[0]	[0]	[0]		-0.80	[0]	+0.74 +0.79		
68.14	73.94	77.26		67.45	76.62	76.05		
68.14	73.94	77.26		66.65	76.42	76.79 76.84		
7	5	7	•	2	3	Э	:	•
264, 265	264 278	264, 265	264, 265	264	264	264	278	278
[0]	+0.39 -0.21] -0.06	-0.27 (-0.32)	[0]	0.05	[0]	+0.05	[0]	[0]
14.63	-7.96	- 14.64	-15.7	27.87	20.16	19.89	20.86	21.78
14.63 	-7.57 -8.17 -8.02		-15.7	27.82	20.16	19.94	20.86	21.78

11. Thiocycloalkanes

The thermodynamic data for thiocyclopropane are apparently reliable. On the other hand, the methylated thiocycloalkanes (2-methyl, 2,2-dimethyl, cis-2,3-dimethyl, trans-2,3-dimethyl, and trimethyl) deviate from the additivity rule. Application of the principle of group additivity to thiocyclopropane leads to a ring correction for the standard heat of formation of +19.72kcal/mole. The ring corrections for 2-methyl-, 2,2-dimethyl-, cis-2,3-dimethyl-, trans-2,3-dimethyl-, and trimethylth ocyclopropane are +17.85, 17.58, 15.66, 14.82, and 15.73 kcal/mole, respectively (the *cis*-ring correction used for thiocyclopropane was 1.0 kcal/mole, the same as found for cyclopropane). The standard heats of formation in the gas phase of the methylated thiocyclopropanes seem on the average low by 3.4 kcal/mole, relative to thiocyclopropane.

B. ORGANOPHOSPHORUS COMPOUNDS (TABLE XXVII²⁸⁰)

The uncertainties in the predicted $\Delta H_{f_{298}}^{\circ}$ values (kcal/mole) are as follows: $R_{3}P$, ± 0.9 ; $(C_{6}H_{5})_{3}P$, ± 3.6 ; $(RO)_{3}P$, ± 2.0 ; $R(PO)X_2$, ± 0.9 ; $R(PO)(OH)_2$, ± 1.6 ; $(R_2N)_3P$, ± 1.2 ; $(R_2N)_3PO, \pm 2.5.$

In the cyclic phosphorus-nitrogen compounds, the strain energy of the rings is apparently zero. Otherwise, one would expect a difference in the strain energy of the rings $(PNCl_2)_2$ and $(PNCl_2)_4$. The value of the group $P:N-(N:P)(Cl)_2(P:N)$ derived from these two rings is 58.8 ± 0.2 kcal/mole.

The gas-phase standard heats of formation of the compounds $(CH_3)_2CHO(CH_3)(PO)(OH)$, $(CH_3CH_2O)_2(PO)(OH)$, (CH₃CH₂CH₂CH₂)₃PO, and (CH₃CH₂CH₂)₃PO were calculated from group values, which were combined with observed heats of reaction to determine the heats of formation of the related compounds, (CH₃)₂CHO(CH₃)(PO)(Cl), (CH₃CH₂O)₂-(PO)F, (CH₃CH₂CH₂CH₂)₃P, and (CH₃CH₂CH₂)₃P.

C. ORGANOBORON COMPOUNDS

The uncertainties in the predicted $\Delta H_{\rm f}^{\circ}_{298}$ values (kcal/mole) are as follows: $R_{3}B$, ± 1.6 ; RBF_{2} , ± 3.0 ; $(RO)_{2}BH$, ± 1.1 ; $(RO)_2BCl, \pm 1.2; (RO)BCl_2, \pm 0.7; (RO)_3B, \pm 1.2; (RS)_3B,$ ± 2.0 ; R₃BO₃, ± 3.1 ; (R₂N)₂BCl, ± 1.3 ; R₂NBCl₂, ± 1.1 .

The calculated heat of formation of the alkylborine ((CH₃CH₂)(CH₃)CH)₃B deviates from its experimental value by 5.2 kcal/mole (see Table XXVIII^{281–288}). Either the observed heat of formation is in considerable error or the correction for next-nearest neighbor interaction is stronger than we have allowed. At present, the evidence is too slight for a decisive conclusion.

Trialkylthioboranes and Triphenylthioboranes. The calculated heat of formation of (CH₃S)₃B deviates from its experimental value by 12.0 kcal/mole (see Table XXVIII), indicating a considerable error in the observed heats of formation. This disparity does not exist in the compounds (CH₈O)₂BH and

- (285) H. A. Skinner and N. B. Smith, ibid., 2324 (1954).
- (286) H. A. Skinner and N. B. Smith, *ibid.*, 4025 (1953).

⁽²⁸⁰⁾ S. B. Hartley, W. S. Holmes, J. K. Jacques, M. F. Mole, and J. C. McCombrey, *Quart. Rev.* (London), 17, 204 (1963).

⁽²⁸¹⁾ H. A. Skinner, Advan. Organometal. Chem., 2, 49 (1964). (282) J. E. Bennett and H. A. Skinner, J. Chem. Soc., 2150 (1962).

⁽²⁸³⁾ W. J. Cooper and J. F. Masi, J. Phys. Chem., 64, 682 (1960).

⁽²⁸⁴⁾ H. A. Skinner and N. B. Smith, J. Chem. Soc., 3930 (1954).

⁽²⁸⁷⁾ T. Charnley, H. A. Skinner, and N. B. Smith, ibid., 2288 (1952).

⁽²⁸⁸⁾ A. Finch, P. J. Gardner, and G. B. Watts, Trans. Faraday Soc., 63. 1603 (1967).

		· · · · · · · · · · · · · · · · · · ·		~				
Compound	$\overline{Obsd}^{\Delta H}$	t ²⁹⁸ Estd	Δ	$\overline{Obsd}^{S^{\circ}}$	Estd	Δ	Ref	<i>n</i> , σ
(CH ₃) ₃ P	-23.2	-23.2	[0]					
	-23.0		+0.2					
(CH ₃ CH ₂) ₃ P	-32.8	-30.6	-2.2					
$(C_6H_5)_3P$	72.4	72.4	[0]					
	76.0		+3.6					
(CH ₃ O) ₃ P	-165.0	-167.5	+2.0					
(CH ₃ CH ₂ O) ₃ P	-191.9	-193.0	+1.1					
((CH ₃) ₂ CHO) ₃ P	-221.8	-218.8	-3.0					
(CH ₃) ₃ PO	-103.0	-103.0	[0]					
(CH ₃ CH ₂ CH ₂) ₃ PO		-128.1						
(CH ₃ CH ₂ CH ₂) ₃ P	-44.9	-45.5	+0.6					
(CH ₃ CH ₂ CH ₂ CH ₂) ₃ PO		-141.1						
(CH ₃ CH ₂ CH ₂ CH ₂) ₃ P	59.0	-58.5	-0.5					
(C₀H₅)₃PO	3.5	3.5	[0]					
$CH_3(PO)(OCH_2CH_3)_2$	-228.1	-228.1	[0]					
$CH_3CH_2(PO)(OCH(CH_3)_2)_2$	-248.7	-248.7	0					
(CH ₃ CH ₂ O) ₃ PO	-282.4	-282.4	[0]					
((CH ₃) ₂ CHO) ₃ PO	-308.2	-308.2	0					
CH ₃ (PO)Cl ₂	-133.9	-133.1	-0.8	81.2	81.2	[0]		3
CH ₂ (PO)F ₂				75.0	75.0	[0]		3
CH ₃ (PO)FCl				80.4	80.4	[0]		2.3
$CH_3CH_2(PO)Cl_2$	-135.5	-136.5	+1.0					
$CH_3(PO)(OH)_2$	-241.1	-239.6	-1.5					
$CH_3CH_2(PO)(OH)_2$	-241.4	-243.0	+1.6					
$CH_3CH_2PCl_2$	-62.6	-62.7	+0.1					
((CH ₃) ₂ CHO)(CH ₃)(PO)(OH)		-242.4						
$((CH_3)_2CHO)(CH_3)(PO)(Cl)$	-190.5	-190.5	[0]					
(CH ₃ CH ₂ O) ₂ (PO)OH		-288.2						
$(CH_3CH_2O)_2(PO)F$	-286.3	-286.3	[0]					
$(CH_3CH_2O)_2(PO)O(PO)(OCH_2CH_3)_2$	500.8	-500.8	[0]					
$(CH_3CH_2O)_2P(OH)$	-209.7	-209.7	[0]					
$((CH_3CH_2)_2N)_3P$	-49.4	-50.5	+1.1					
$((CH_3)_2N)_3P$	-32.0	-30.7	-1.3					
$((CH_3)_2N)_3PO$	-114.1	-111.7	-2.4					
$((CH_3CH_2)_2N)_3PO$	-148.8	-151.3	-2.5					
$(CH_3)_3P:N(CH_2CH_3)$	-20.4	-20.4	[0]					
$(C_6H_5)_3P:N(CH_2CH_3)$	40.0	40.0	[0]					
$(Cl_2P:N)_3$	-175.9	-174.9	-1.3					
$(Cl_2P; N)_4$	-231.7	-233.2	+1.1					
$((CH_3)_2 P:N)_2$	-10/.1	-107.1	-0.1					
$((C_{6}H_{11}O)_{2}F:N)_{3}$	- 202.0	- 204.9	-0.1					
(C6H5)2 r :N)4	28.1	20.0	-0.1					

Table XXVII Organophosphorus Compounds^a

^a All data from ref 280.

 $((CH_3)_2CHO)_2BH$, which justifies ascribing the disparity in $(CH_3S)_3B$ to experimental error.

D. ORGANOMETALLIC COMPOUNDS

The uncertainties in the predicted $\Delta H_{\rm f}^{\circ}_{298}$ values (kcal/mole) are as follows: R₄Sn, ±1.7; R₃SnX, ±1.6; R₂SnX₂, ±1.2; RSnX₈, ±0.7; R₃SnH, ±1.3; R₃Sn(CH=CH₂), ±1.4; R₃SnSnR₃, ±2.8.

The group values clearly indicate that an inconsistency exists between the thermochemical data of $(CH_3)_3SnSn(CH_3)_3$ and $(CH_3CH_2)_3SnSn(CH_2CH_3)_3$, suggesting that the heats of formation of the ethyl compounds should be reduced by 16–18 kcal/mole (see Table XXIX^{281, 289–296}). This amounts to less

than 1% systematic error in the measured heats of combustion, which is entirely possible.

The gas-phase standard heats of formation of the compounds $(CH_3CH_2CH_2CH_2)_3SnCl$ and $(CH_2=CH)_4Sn$ were calculated from group values, which were combined with the observed heats of redistribution reaction to obtain the heat of formation of the related compounds, $(CH_3CH_2CH_2CH_2)SnCl_3$ and $(CH_2=CH)_3SnCl$.

1. Zinc

The uncertainty in the predicted $\Delta H_t^{\circ}_{298}$ of the tetraalkylzinc compounds is ± 2.5 kcal/mole.

⁽²⁸⁹⁾ G. A. Nash, H. A. Skinner, and W. F. Stack, Trans. Faraday Soc., 61, 640 (1964).

⁽²⁹⁰⁾ D. J. Coleman and H. A. Skinner, ibid., 62, 1721 (1966).

 ⁽²⁹¹⁾ W. F. Stack, G. A. Nash, and H. A. Skinner, *ibid.*, **61**, 2122 (1965).
 (292) J. V. Davies, A. E. Pope, and H. A. Skinner, *ibid.*, **59**, 2233 (1963).

⁽²⁹³⁾ D. C. Bradley and M. T. Hillyer, ibid., 62, 2367, 2374, 2382 (1966).

⁽²⁹⁴⁾ A. E. Pope and H. A. Skinner, *ibid.*, **60**, 1402 (1964).
(295) K. Hartley, H. O. Pritchard, and H. A. Skinner, *ibid.*, **47**, 254 (1951); **46**, 1019 (1950).

^{(1951);} **46**, 1019 (1950). (296) C. T. Mortimer H. O. Pritchard, and H. A. Skinner, *ibid.*, **48**, 220 (1952).

	Organo	boron Compounds	8			
<i>.</i> .	<i>.</i>	Δi	H _f ° ₂₉₈		_ •	
 Compound	(gauche)	Obsd	Estd	Δ	Ref	
(CH ₃) ₃ B	(0)	-29.3	-29.3	[0]	281	
(CH ₃ CH ₂) ₂ B	(0)	-36.5	-36.0	-0.5	281	
(CH ₃ CH ₂ CH ₂ CH ₂) ₂ B	(0)	-67.7	-65.7	-2.0	281	
((CH ₃) ₂ CHCH ₂) ₃ B	(3)	-66.9	-67.1	+0.2	281	
$((CH_3CH_2)(CH_3)CH)_3B$	(9)	-58.7	-63.9	+5.2	281	
$(CH_3(CH_2)_4CH_2)_3B$	(0)	-94.8	-95.4	+0.6	281	
$(CH_3(CH_2)_5CH_2)_3B$	(0)	-109.4	-110.3	+0.9	281	
$(CH_3(CH_2)_6CH_2)_3B$	(0)	-124.5	-125.1	+0.6	281	
(CH ₃ CH ₂ CH ₂ CH ₂) ₂ BCl	(0)	-86.7	-86.7	[0]	281	
(CH ₃ CH ₂ CH ₂ CH ₂) ₂ BBr	(0)	-71.3	-71.3	[0]	281	
$(CH_{3}CH_{2}CH_{2}CH_{2})_{2}BI$	(0)	-53.3	-53.3	[0]	281	
CH_3BF_2	(0)	199	-203	+4	281	
CH ₃ CH ₂ BF ₂	(0)	-209	-205	+4	281	
$(CH_3)_2 CHBF_2$	(0)	-212	-212	0	281	
$CH_2 = CHBF_2$	(0)	-171	-171	[0]	281	
(CH ₃ O) ₂ BH	(0)	-139.2	-139.2	[0]	283	
((CH ₃) ₂ CHO) ₂ BH	(0)	-174.4	-173.3	-1.1	282	
$(CH_{3}CH_{2}O)_{2}BCl$	(0)	-197.0	-195.8	-1.2	284	
		-195.8^{a}		[0]		
(CH ₃ CH ₂ O)BCl ₂	(0)	-149.9	-149.2	-0.7	284	
		-149.2ª		[0]		
(CH ₃ CH ₂ O) ₃ B	(0)	-240.8	-239.6	-1.2	281	
		-239.6°		[0]		
(CH ₃) ₃ BO ₃	(0)	-215.7	-215.7	[0]	281	
(CH ₃ CH ₂) ₃ BO ₃	(0)	-240.8	-245.5	+4.7	281	
(CH ₃ CH ₂ CH ₂) ₂ BO ₂	(0)	-260.9	-260.4	-0.5	281	
(CH ₃ CH ₂ CH ₂ CH ₂) ₂ BO ₂	(0)	-279.4	-275.2	-4.2	281	
(CH ₃ CH ₂ CH ₂ CH ₂) ₂ BOH	(0)	-130.6	-130.6	[0]	281	
$((CH_3)_2N)_2B$	(0)	-65.9	-65.9	101	286	
$((CH_3)_2N)_2BCl$	(0)	-85.3	-84.0	-1.3	285	
		-84.0ª		[0]		
$(CH_3)_2NBCl_2$	(0)	-99.1	-98.0	-1.1	285	
		-98.04		[0]		
(CH ₃ S) ₃ B	0	-37.4	-49.4	-12.0	288	
(CH ₃ CH ₂ S) ₃ B	0	-68.2	-66.4	-1.8	288	
(CH ₃ CH ₂ CH ₂ S) ₂ B	0	-80.0	-81.2	-1.2	288	
(CH ₃ CH ₂ CH ₂ CH ₂ S) ₂ B	0	-94.2	-96.2	-2.0	288	
(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ S),B	0	-110.7	-111.1	-0.4	288	
(CS) ₃ B	0	45.1	45.1	[0]	288	
• • •				·		

Table XXVIII

^a Heat of vaporization corrected to 25°.

2. Organotitanium, -vanadium, and -chromium Compounds

The reported uncertainty in $\Delta H_t^{\circ}_{298}$ is about ± 2 kcal/mole. Group additivity suggests ± 9 kcal/mole for titanium alkoxides. gauche corrections were not employed. The deviation of the calculated heat of formation from the observed value could not be reconciled with next-nearest neighbor interactions. Apparently these errors are associated with the experimental values. A comparison of the steric interactions in the titanium alkyl oxides with the observed steric interactions in di-*t*-butyl ether indicates that the intramolecular strain must be nearly zero for these compounds.

In Table XXX it is immediately apparent that the heat of formation of $[(CH_3CH_2)(CH_3)_2CO]_4$ Ti is in error by at least 16 kcal/mole. The other values fall into two sets: $[CH_3CH_2O]_4$ Ti, $[(CH_3)_2CHO]_4$ Ti, $[CH_3(CH_3CH_2)CHO]_4$ Ti, $[(CH_3)_3CO]_4$ Ti with an average value of -251 ± 2 kcal/mole and $[CH_3(CH_2)_2O]_4$ Ti, $[CH_3(CH)_2)_3O]_4$ Ti, $[CH_3(CH_2)_4O]$ Ti, $[(CH_3)_2CHCH_2O]_4$ Ti with an average value of -263 ± 3 kcal/mole. This disparity probably originates from the estimates of the heats of vaporization and heats of depolymerization of the liquids, rather than the measured heats of formation of the liquids.

3. Mercury

The uncertainties in the predicted $\Delta H_t^{\circ}_{298}$ are listed as follows: R₂Hg, ±2.7 kcal/mole; RHgX, ±0.9 kcal/mole.

E. MISCELLANEOUS COMPOUNDS

Table XXXI²⁹⁷⁻³⁰⁵ includes data for compounds containing unique groups.

(297) B. J. McBride, S. Heimel, J. G. Ehlers, and S. Gordon, NASA Report SP-3001.

(299) H. W. Thomson, Trans. Faraday Soc., 37, 251 (1941).

- (303) H. J. Spangenberg and M. Pfeiffer, Z. Physik. Chem. (Leipzig), 232, 343 (1966).
- (304) H. J. Spangenberg, ibid., 232, 271 (1966).

⁽²⁹⁸⁾ M. G. Krishna-Pillai and F. F. Cleveland, J. Mol. Spectry., 6, 465 (1961).

⁽³⁰⁰⁾ J. T. Brandenburg, Ph.D. Dissertation, University of Nebraska, 1958; Dissertation Abstr., 18, 1994 (1958).

⁽³⁰¹⁾ K. Ramaswamy, K. Sathianandan, and F. F. Cleveland, J. Mol. Spectry., 9, 107 (1962).

⁽³⁰²⁾ R. F. Porter and S. K. Gupta, J. Phys. Chem., 68, 2732 (1964).

⁽³⁰⁵⁾ S. R. Gunn and J. H. Kindsvater, J. Phys. Chem., 70, 1750 (1966).

Table XXIX

Organometallic Compounds

		^ LI	•			
Metal	Compound	Obsd	Estd	Δ	Ref	
Tin	(CH) Sn	A 1	A 1	[0]	202	
1111	(CH ₃) ₄ Sn	-4.1	-4.1	[0]	292	
		4.0	()	-0.5	281	
	$(CH_3)_3SI(CH_2CH_3)$	-0.54	-0.3	-0.2	202	
		-/.1	(0.0	-0.8	292	
	$(CH_3)_3Sn(CH(CH_3)_2)$	-11.2	-10.8	-0.4	290	
	$(CH_3)_3Sn(C)CH_3)_3$	-16.1	-16.1	[0]	290	
	$(CH_3)_3SnCH_2C_5H_5$	20.2	20.2	[0]	292	
		20.8ª		-1.1		
	$(CH_3)_3SnC_5H_5$	26.7ª	26.7	[0]		
		26.1		-1.7	292	
	(CH ₃) ₃ SnCl	-41.8	-40.0	-1.8	289	
	(CH ₃) ₃ SnCl ₂	-70.6	-69.4	-1.2	289	
	CH ₂ SnCl ₂	-99.8	-99.6	-0.2	289	
	(CH ₂) _s SnBr	-32.2	-32.0	-0.2	289	
	(0113)/251101	_33 3	52.0	-13	207	
		22.6		1.5		
		- 33.0	20.2	-1.0	220	
	(CH ₃) ₃ 5n1	-20.3	-20.3	[0]	239	
		-17.8		+2.5		
	$(CH_3)_{a}(CH_2=CH)Sn$	22.1	22.4	-1.4	292	
		22.4^{a}		[0]		
	$(CH_3)_3SnSn(CH_3)_3$	-7.6	-7.7	0.1	281	
		-5.6		+2.1	292	
	(CH ₃ CH ₂) ₄ Sn	-10.7	-12.8	+2.1	281	
		-8.1		+4.7	292	
	(CH ₂ CH ₂) ₂ SpCl	-46.2	-46.6	+0.4	281 289	
	(CH.CH.)SpCl		-101 8	-0.2	281,289	
	(CH_{CH}) Since (CH_{CH})	27.0	- 101.0	16.2	201, 209	
	$(CH_3CH_2)_3$ SIISII $(CH_2CH_3)_3$	-37.0	-20.8	-10.2	201, 209	
	$(CH_3CH_2CH_2)_4Sn$	- 34.0	-30.0	+2.0	201, 209	
		-33.2		+3.4	•••	
	(CH ₃ CH ₂ CH ₂) ₃ SnH	-18.8	-16.8	-2.0	291	
	$(CH_3)_2CH)_4Sn$	-29.3	-27.9	-1.4	290	
	(CH ₃ CH ₂ CH ₂ CH ₂) ₄ Sn	-52.9	-52.4	-0.5	281	
		-55.9ª		-3.5	292	
	(CH ₃ CH ₂ CH ₂ CH ₂) ₃ SnH	-32.2	-31.7	-0.5	291	
	(CH ₃ CH ₂ CH ₂ CH ₂) ₃ SnBr	-66.03	-68.4	+2.4	292	
		-65.5		+2.9	281	
	(CH.CH.CH.CH.).SpCl		-76.28			
		112 56		_1.8	280	
	$(CH_3CH_2CH_2)SHCI_3$	-115.5*		-1.0 [0]	201	
	$(C_6 \Pi_5)_4 S \Pi$	114.5	114.3	[0]	224	
	$(CH_2 = CH)_4$ Sn		90.32	501	209	
	$(CH_2 = CH)_3$ SnCl	36.8%	36.9	[0]	289	
	$(CH_2 = CH)_2 SnCl_2$	-20.6*	-20.6	[0]	289	
	$(CH_2 = CH)SnCl_3$	-67.1	-67.1	[0]	289	
Lead	(CH ₃) ₄ Pb	32.6	32.6	[0]	281	
	(CH₃CH₂)₄Pb	25.8	25.8	[0]	281	
Chromium	((CH ₃) ₃ CO) ₄ Cr	-305	- 305	[0]	293	
Zinc	$(CH_3)_2Zn$	13.1	13.1	[0]	281	
	(CH ₂ CH ₂) ₂ Zn	13.0	9.6	+3.4	281	
	(10.2		+0.6	281	
	(CH.CH.CH.).7n	-2.24	-0.3	-1.9	281	
		-12 24	-10.2	-2.0	281 289	
Titonium	$(CH_3CH_2CH_2CH_2)_2Z_{11}$	_225	_ 375	0	201, 202	
Intanium	$(CH_3CH_2O)_4\Pi$	- 323	- 325	0	203	
	$(CH_3CH_2CH_2O)_4\Pi$	- 354	- 343		293	
	$((CH_3)_2 CHO)_4 11$	360	- 360	0	293	
	(CH ₃ CH ₂ CH ₂ CH ₂ O) ₄ Ti	-377	-365	-12	293	
	((CH ₃) ₂ CHCH ₂ O) ₄ Ti	-381	-373	-9	293	
	((CH ₃)(CH ₃ CH ₂)CHO) ₄ Ti	-382	-379	-2	293	
	((CH ₄) ₃ CO) ₄ Ti	- 395	- 398	+3	293	
	(CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ O) ₄ Ti	403	-385	-18	293	
	((CH ₃) ₃ CCH ₂ O) ₄ Ti	-438	-418	-20	293	
	((CH ₃ CH ₂) ₂ N) ₄ Ti	-100	-100	[0]	293	
Vanadium	((CH ₃) ₃ CO) ₄ V	328	-328	[0]	293	
Cadmium	(CH _a) ₂ Cd	26.2	26.2	[0]	281	
	(CH ₃ CH ₂) ₂ Cd	25.5	25.5	[0]	281	

Additivity Rules for Estimation of Thermochemical Properties

	Table	XXIX (Continued)	2			
Metal	Compound	$\overline{Obsd}^{\Delta H_{\mathrm{f}}}$	Estd	Δ	Ref	
Aluminum	(CH ₂)₂A1	-21.0	-21.0	[0]	281	
••••••••	$(CH_{1}CH_{2})$ A	19	-19	[0]	281	
Germanium	(CH ₂ CH ₂), Ge	-34.6	-34.9	+0.3	281	
	(CH ₂ CH ₂ CH ₂) ₄ Ge	-54.9	-54.7	-0.2	281	
Mercury	(CH ₃) ₂ Hg	22.9	22.3	+0.6	295	
	(22.3		[0]	281	
	CH₃HgCl	-12.6	-12.9	+0.3	295	
		-12.3		+0.6	281	
	CH₃HgBr	-4.7	-5.2	+0.5	295	
		-4.4		+0.8	281	
	CH3HgI	5.2	5.7	-0.5	295	
		5.3		-0.4	281	
	$(CH_3CH_2)_2Hg$	21.9	17.0	+4.9	295	
		17.2		+0.2	281	
	(CH ₃ CH ₂)HgCl	-14.2	-15.6	+1.4	294	
		-15.8		-0.2	281	
	(CH ₃ CH ₂)HgBr	-6.1	-7.88	+1.8	295	
		-7.7		+0.2	281	
	(CH ₃ CH ₂)HgI	4.7	3.0	+1.7	295	
		3.1		+0.1	281	
	$(CH_3CH_2CH_2)_2Hg$	12.4^{a}	7.08	+5.3	296	
		6.7		-0.4	281	
	(CH ₃ CH ₂ CH ₂)HgCl	-18.6	20.5	+1.9	296	
		-20.6		0.1	281	
	(CH ₃ CH ₂ CH ₂)HgBr	-10.6	-12.8	+2.2	296	
		-12.7		+0.1	281	
	(CH ₃ CH ₂ CH ₂)HgI	0.8	-1.93	+2.7	296	
		-1.2		-0.7	281	
	$((CH_3)_2CH)_2Hg$	10.4	9.42	+1.0	296	
		9.4		[0]	281	
	((CH ₃) ₂ CH)HgCl	-20.1	-19.4	-0.7	296	
		-19.7		-0.3	281	
	((CH ₃) ₂ CH)HgBr	-13.0	-11.7	-1.3	296	
		-12.6		-0.9	281	
	((CH ₃) ₂ CH)HgI	-1.4	-0.76	-0.6	296	
		-1.1		-0.3	281	
	$(C_6H_5)_2Hg$	93.8	93.8	[0]	281	
		90.9		-2.9	295	
		90.5	a : <i>i</i>	-3.3	295	
	(C ₆ H ₆)HgCl	24.6	24.6	[0]	281	
		27.4	aa ^	+2.8	295	
	(C ₆ H ₅)HgBr	32.6	32.8	-0.2	295	
		32.8	10 1	[U]	281	
	(C_6H_5) HgI	42.9	42.6	+0.3	295	
		42.6		[U]	281	

• Heat of vaporization corrected to 25°. ^b See text

Table XXX

Gaseous Heats of Formation of Titanium Alkyloxides

Compound	ΔH_{f}° , kcal/mole for [Ti-(O) ₄] + 4[O-(Ti)(C)]
[CH ₃ CH ₂ O] ₄ Ti	-251
[CH ₃ (CH ₂) ₂ O] ₄ Ti	-260
[CH ₃ (CH ₂) ₃ O] ₄ Ti	-263
[CH ₃ (CH ₂) ₄ O] ₄ Ti	-269
[(CH ₃) ₂ CHO] ₄ Ti	-251
[(CH ₃) ₂ CHCH ₂ O] ₄ Ti	-259
[(CH ₃)(CH ₃ CH ₂)CHO] ₄ Ti	-254
[(CH ₃) ₈ CO] ₄ Ti	-248
[(CH ₃ CH ₂)(CH ₃) ₂ CO] ₄ Ti	-285

This section prepared by S. W. Benson and G. R. Haugen.

VIII. Guide to the Use of the Group Tables (Tables XXXIII-XXXVIII)

(a) All values of $\Delta H_{\rm f}^{\circ}$ are in kcal/mole; S° and $C_{\rm p}^{\circ}$ are in cal/(deg mole).

(b) Values of properties calculated from the tables may be corrected to any temperature by the approximations² (parameters in these equations refer to formation reactions).

$$\Delta H_{T_2}^{\circ} = \Delta H_{T_1}^{\circ} + \Delta C_{p^{\circ}} (T_2 - T_1)$$

$$\Delta S_{T_2}^{\circ} = \Delta S_{T_1}^{\circ} + \overline{\Delta C_{p^{\circ}}} \ln (T_2/T_1)$$

where

$$\overline{\Delta C_{\mathbf{p}}^{\circ}} = 0.5(\Delta C_{\mathbf{p}}^{\circ}_{T2} + \Delta C_{\mathbf{p}}^{\circ}_{T1})$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C •										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Compound	$\Delta H_{\mathrm{f}}^{\circ}{}_{298}$	S°298	3 00°	4 00°	500°	́р 600°	800°	1000°	Ref		
$\begin{array}{cccccc} & -50.37 & 73.62 & 15.94 & 17.07 & 17.79 & 18.28 & 18.88 & 19.20 & 297 \\ 66.17 & 10.88 & 11.62 & 12.15 & 12.54 & 13.03 & 13.31 & 297 \\ $F_{7} & -54.5 & 69.30 & 15.33 & 16.83 & 17.74 & 18.31 & 18.94 & 19.26 & 297 \\ $F_{7} & -54.43 & 7.57 & 7.96 & 8.24 & 8.44 & 8.68 & 8.81 & 297 \\ $F_{7} & -54.43 & 7.57 & 7.96 & 8.24 & 8.44 & 8.68 & 8.81 & 297 \\ $S_{C1} & -4.15 & 67.30 & 12.19 & 12.83 & 13.18 & 13.39 & 13.61 & 13.11 & 27 \\ $S_{C1} & -5.15 & 67.30 & 12.19 & 12.83 & 13.18 & 13.39 & 13.61 & 13.11 & 27 \\ $S_{C2} & -5.4 & 8.68 & 8.81 & 8.81 & 297 \\ $S_{C1} & -5.15 & 66.9 & 51 & 8.20 & 8.81 & 8.81 & 8.31 & 13.14 & 13.40 & 28 \\ $S_{C2} & 5.0 & 51 & 8.69 & 8.81 & 8.81 & 297 \\ $S_{C1} & -5.15 & 66.9 & 51 & 15.44 & 16.61 & 17.51 & 18.10 & 18.78 & 19.14 & 228 \\ $S_{P1} & -5.0 & & & & & & & & & & & & & & & & & & &$	SOF		62.87	9.97	10.92	11.63	12.14	12.79	13.15	297		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SOCl ₂	-50.37	73.62	15.94	17.07	17.79	18.28	18.88	19.20	297		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SOCI		66.17	10.88	11.62	12.15	12.54	13.03	13.31	297		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_2F_2	-54.5	69.30	15.33	16.83	17.74	18.31	18.94	19.26	297		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SF_2	-51.8	60.92	10.44	11.50	12.18	12.63	13.14	13.40	297		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SF		54.33	7.57	7.96	8.24	8.44	8.68	8.81	297		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S_2Cl_2	-4.75	76.49	17.44	18.37	18.87	19.16	19.46	19.61	297		
Scl. 2.0 57.25 5.02 5.7.2 5.00 5.7.1 8.69 8.31 8.69 9.0.1 18.73 19.14 295.297 (SCL) 4.58 4.534 15.34 15.34 15.61 17.51 18.10 18.73 19.14 295.297 4.59 25.05 20.0 93.15 20.0 20.15 20.0 20.15 20.0 20.0 20.15 20.0 20.15 20.0 20.0 20.15 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	SCl ₂	-5.15	67.20	12.19	12.83	13.18	13.39	13.61	13.71	297		
	SCI	32.0	57.25	8.20	8.51	8.69	8.81	8.95	9.04	297		
Hs; 1.5.9 5.9 5.9 17.23 19.60 21.17 22.25 23.56 24.29 301 HNCS 30.0 59.15 300 PH, 50. 280 Ph, -35.0 280 Ph, -35.0 280 Ph, -35.0 280 H)(-77) 55.03 10.08 11.17 12.01 12.64 13.45 13.91 297 H)(-77) 55.03 10.08 11.17 12.01 12.64 13.45 13.91 297 H)(-77) 55.03 10.08 11.17 12.01 12.64 13.45 13.91 297 H)(-77) 0 20.02 263 HSIR 64.54 12.86 77.71 20.02 263 Sibr, -98.0 90.22 23.21 24.23 25.07 25.31 25.49 263 CISIBr, 90.12 23.21 24.23 25.07 25.31 25.49 263 CISIBr, 90.12 23.21 24.23 25.07 25.31 25.49 263 CISIBr, 90.12 23.35 24.59 24.91 25.31 25.49 263 CISIBr, 90.12 23.35 24.54 25.13 25.47 263 Sibr, 90.58 23.39 24.35 24.44 25.13 25.42 25.57 263 SiC(T4), SIC(1) 65.8 23.39 24.35 24.44 55.14 25.15 25.77 263 SIC(T4), SIC(1) 685.02 26.17 35.81 34.61 37.72 42.54 46.13 263 CICH, SISF, 80.26 26.17 35.81 34.61 37.72 42.54 44.13 263 CICH, SISF, 80.21 27.2 25.00 13.39 73 71.14 25.78 7308 CICH, SISF, 80.21 27.2 25.00 13.97 37.17 42.16 45.78 303 CICH, SISF, 80.21 27.2 25.00 13.39 73 71.74 24.54 75.78 303 CICH, SISF, 70.7 22.73 25.15 30.54 263 SIG, CIL, SISF, 70.7 22.73 26.15 30.54 263 CICH, SISH, (-12) CIS, SISH, (-13) CIS, SISH, (-13) CIS, SISH, (-12) CIS, SISH, (-13) CIS, SISH, (-13)		2.0	70.84	15.34	10.01	17.51	18.10	18.78	19.14	298, 299		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H ₂ S ₂	5.9	60 37	17 22	10 60	21 17	22.25	22 56	24 20	204		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INDES	30.0	50 15	17.25	19.00	21.17	22.23	23.30	24.23	300		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DU.	50.0	39.15							280		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PBr.	-28.9								280		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PBr.	-53.0								280		
	BO	(-75)	55.03	10.08	11.17	12.01	12.64	13.45	13.91	297		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H ₄ BOH	-70.0	00100	10100		12101	12101	10110		302		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HB(OH)	-153.8								302		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H ₂ SiBr		62,76	12.69	14.87			20.02		263		
$ \begin{array}{c c c c c c } \hline 15.5 \mbox{Br}_{h} & -98.0 & 90.22 & 23.21 & 24.23 & 25.07 & 25.39 & 25.54 & 26.3 \\ \hline 15.1 \mbox{SiBr}_{h} & 90.14 & 22.78 & 23.95 & 24.91 & 25.31 & 25.49 & 26.3 \\ \hline 15.1 \mbox{Cls.Br}_{h} & 89.48 & 22.39 & 23.69 & 24.79 & 25.23 & 25.47 & 26.3 \\ \hline 15.1 \mbox{SiCH}_{h} & -96.58 & 23.39 & 24.35 & 24.84 & 25.13 & 25.52 & 26.3 \\ \hline 15.1 \mbox{SiCH}_{h} & (-26) & 85.79 & 33.52 & 40.32 & 46.48 & 51.84 & 60.55 & 67.31 & 26.3 \\ \hline (CH_{h}) \mbox{SiCL} & -106.0 & 86.02 & 26.17 & 36.81 & 34.61 & 37.72 & 42.54 & 46.13 & 263 \\ \hline (CH_{h}) \mbox{SiCL} & -106.0 & 86.02 & 26.17 & 36.81 & 34.61 & 37.72 & 42.54 & 46.13 & 263 \\ \hline (CH_{h}) \mbox{SiCL} & -106.0 & 86.02 & 26.17 & 36.81 & 34.61 & 37.72 & 42.54 & 46.13 & 263 \\ \hline (CH_{h}) \mbox{SiL}_{h} & 75.07 & 22.73 & 26.15 & 30.34 & 10.33 & 56.58 & 303 \\ \hline (CH_{h}) \mbox{SiL}_{h} & 75.07 & 22.73 & 26.15 & 30.54 & 10.33 & 263 \\ \hline (CH_{h}) \mbox{SiL}_{h} & -28.0 & 263 & 34.03 & 39.18 & 43.46 & 50.50 & 55.87 & 263.303 \\ \hline (CH_{h}) \mbox{SiL}_{h} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ \hline (CH_{h}) \mbox{SiL}_{h} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ \hline (CH_{h}) \mbox{SiL}_{h} & (-27.0) & 263 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ \hline (CH_{h}) \mbox{SiL}_{h} & (-27.0) & 263 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ \hline (CH_{h}) \mbox{SiL}_{h} & -1.0 & 263 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ \hline (CH_{h}) \mbox{SiL}_{h} & (-27.0) & 263 &$	H ₃ SiI		64.54	12.86						263		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H.SiBr,		73.92	15.68	17.71			21.73		263		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SiBr ₄	-98.0	90.22	23.21	24.23		25.07	25.39	25.54	263		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ClSiBr ₃		90.14	22.78	23.95		24.91	25.31	25.49	263		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cl ₂ SiBr ₂		89.48	22.39	23.69		24.79	25.23	25.47	263		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cl ₃ SiBr		83.52	21.72	23.35		24.57	25.13	25.35	263		
$\begin{split} & \text{Si}(CH_{2})_{\text{k}} & (-26) & 85.79 & 33.52 & 40.32 & 46.48 & 51.84 & 60.55 & 67.31 & 263 \\ & \text{CH}_{3}\text{SiCl} & -106.0 & 85.56 & 31.36 & 36.94 & 41.63 & 45.71 & 52.15 & 57.08 & 304 \\ & \text{(CH}_{3}\text{SiCl} & -106.0 & 86.02 & 26.17 & 36.81 & 34.61 & 37.72 & 42.54 & 46.13 & 263 \\ & \text{(CH}_{3}\text{SiF} & 83.81 & 29.42 & 35.09 & 40.14 & 44.40 & 51.30 & 56.58 & 303 \\ & \text{(CH}_{3}\text{SiF} & 80.21 & 25.26 & 30.01 & 33.97 & 37.17 & 42.16 & 45.87 & 303 \\ & \text{(CH}_{3}\text{SiF} & 75.07 & 22.73 & 26.15 & 30.54 & 263 \\ & \text{(CH}_{3}\text{SiH} & -28.0 & 263 \\ & \text{(CH}_{3}\text{SiH} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263,294 \\ & \text{(CH}_{3}\text{SiH} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263,294 \\ & \text{CH}_{3}\text{SiH} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263,294 \\ & \text{CH}_{3}\text{SiH} & (-17) & & & & & & & & & & & & & & & & & & &$	ISiBr ₃		96.58	23.39	24.35	24.84	25.13	25.42	25.57	263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(CH ₃) ₄	(-26)	85.79	33.52	40.32	46.48	51.84	60.55	67.31	263		
$\begin{array}{c c c } (CH_4)_{\rm SiFL} & -106.0 & 86.02 & 26.17 & 36.81 & 34.61 & 37.72 & 42.54 & 46.13 & 263 \\ (CH_4)_{\rm SiFL} & 83.81 & 29.42 & 35.09 & 40.14 & 44.40 & 51.30 & 56.58 & 303 \\ (CH_4)_{\rm SiFL} & 75.07 & 22.73 & 26.15 & 30.54 & 263 \\ (CH_4)_{\rm SiI}, & -28.0 & 263 & 127.85 & 57.22 & 68.40 & 78.16 & 86.48 & 99.95 & 110.33 & 263 \\ SiI_4 & -28.0 & 263 & 26.15 & 30.70 & 34.24 & 39.79 & 43.99 & 263, 294 \\ C(H_4)_{\rm SiH_4} & (-12) & 79.03 & 28.36 & 34.03 & 39.18 & 43.46 & 50.50 & 55.87 & 263, 303 \\ (CH_4)_{\rm SiH_4} & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263, 294 \\ C(H_4)_{\rm SiH_4} & (-17) & & & & & & & & & & & & & & & & & & &$	(CH ₃) ₃ SiCl		85.56	31.36	36.94	41.63	45.71	52.15	57.08	304		
$\begin{array}{cccc} (CH_4), SiF_{4} & 83, 81 & 29, 42 & 35, 09 & 40, 14 & 44, 40 & 51, 30 & 56, 58 & 303 \\ (CH_4), SiF_{4} & 80, 21 & 25, 26 & 30, 01 & 33, 97 & 37, 17 & 42, 16 & 45, 87 & 303 \\ (CH_4), SiF_{4} & 75, 07 & 22, 73 & 26, 15 & 30, 54 & 263 \\ SiI_{4} & -28, 0 & 227, 3 & 26, 15 & 30, 54 & 263 \\ (CH_4), SiH_{4} & (-21) & 79, 03 & 28, 36 & 34, 03 & 39, 18 & 43, 46 & 50, 50 & 55, 87 & 263, 303 \\ (CH_4), SiH_{4} & (-17) & 71, 70 & 22, 03 & 26, 71 & 30, 70 & 34, 24 & 39, 79 & 43, 99 & 263, 294 \\ CH_4, SiH_4 & (-17) & 71, 70 & 22, 03 & 26, 71 & 30, 70 & 34, 24 & 39, 79 & 43, 99 & 263, 294 \\ CH_4, SiH_4 & (-17) & $	$(CH_3)_2$ SiCl ₂	-106.0	86.02	26.17	36.81	34.61	37.72	42.54	46.13	263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₃) ₃ SiF		83.81	29.42	35.09	40.14	44.40	51.30	56.58	303		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(CH_3)_2SiF_2$		80.21	25.26	30.01	33.97	37.17	42.16	45.87	303		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ SiF ₃		75.07	22.73	26.15		30.54	00.05	110.00	263		
$\begin{array}{c c c c c c c } Sil_4 & -28.0 & 263 \\ (CH_4)_SiH_4 & (-21) & 79.03 & 28.36 & 34.03 & 39.18 & 43.46 & 50.50 & 55.87 & 263.303 \\ (CH_5)_SiH_2 & (-17) & 71.70 & 22.03 & 26.71 & 30.70 & 34.24 & 39.79 & 43.99 & 263.294 \\ CH_5SiH_4 & (-12) & & & & & & & & & & & & & & & & & & &$	$[(CH_3)_3Si]_2O$	a a a	127.85	57.22	68.40	78.16	86.48	99.95	110.33	263		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sil ₄	-28.0	70.02	28.26	24.02	20.19	47 46	50 50	55 0 7	203		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₃) ₃ SIH	(-21)	79.03	20.30	34.03	39.10	43.40	30.30	JJ.07	203, 303		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$(CH_3)_2S1H_2$	(-17)	/1./0	22.03	20.71	30.70	54.24	39.19	43.99	203, 294		
$\begin{array}{cccc} C_{4} R_{3} SiT_{4} & (-17) \\ (C_{4} H_{3} SiH_{4} & (-36.0) & 263 \\ (C_{4} H_{3} SiH_{4} & -1.0 & 263 \\ c_{4} L_{3} SiH_{4} & -1.0 & 263 \\ c_{4} L_{3} SiH_{4} & -1.0 & 263 \\ c_{4} L_{3} SiH_{4} & (-27.0) & 263 \\ (CH_{4})_{5} Si(1-C_{4} H_{7})_{2} & -47.0 & 263 \\ (CH_{4})_{5} Si(1-C_{4} H_{7})_{2} & -47.0 & 263 \\ Si(0CH_{4})_{4} & -300.3 & 263 \\ Si(0C_{4} H_{3})_{4} & -322.0 & 263 \\ Si(0-C_{4} H_{7})_{4} & -346.0 & 263 \\ Si(0-C_{4} H_{7})_{4} & -346.0 & 263 \\ Si_{0} O_{1} COL_{4} H_{7})_{4} & -1346.0 & 263 \\ Si_{0} O_{1} COL_{4} H_{7})_{4} & -147.0 & 263 \\ Si_{0} O_{1} COL_{4} H_{7})_{4} & -136.0 & 263 \\ Si_{0} O_{1} COL_{4} H_{3})_{2} & -1215.0 & 263 \\ (CH_{4})_{5} Si(OL_{7} H_{3})_{2} & -215.0 & 263 \\ (CH_{4})_{5} Si(OH_{2} & -192.0 & 263 \\ (CH_{4})_{5} Si(OH_{2} & -192.0 & 263 \\ (CH_{4})_{5} Si(OH_{2} & -192.0 & 263 \\ (C_{4} L_{3})_{5} Si(OH_{2} & -192.0 & 263 \\ (C_{4} L_{3})_{5} Si(OH_{2} & -135.0 & 263 \\ Si_{0} O_{1} CH_{3} & -203.0 & 263 \\ Si_{0} O_{1} CH_{3} & -203.0 & 263 \\ Si_{0} O_{1} CH_{3} & -203.0 & 263 \\ Si_{0} O_{1} CH_{3} & -351.0 & 263 \\ Si_$		(-12)										
$ \begin{array}{c} (c_2H_3)_{51H_2} & (-27) \\ (c_2H_3)_{51H_2} & (-36.0) \\ (c_2H_3)_{51H_1} & (-36.0) \\ (c_2H_3)_{51H_1} & (-1.0) \\ (c_2H_3)_{51H_1} & (-1.0) \\ (c_2H_3)_{51H_1} & (-27.0) \\ (c_4H_3)_{51H_1} & (-27.0) \\ (c_4H_3)_{51(1-C_3H_1)_2} & -47.0 \\ (c_4H_3)_{51(1-C_3H_1)_2} & (-47.0) \\ (c_4H_3)_{51(1-C_3H_1)_4} & (-300.3) \\ (si(OCH_4)_4 & (-300.3) \\ si(O_2H_4)_4 & (-322.0) \\ si(O_2H_4)_4 & (-322.0) \\ si(O_2CH_4)_4 & (-322.0) \\ si(O_2CH_4)_4 & (-346.0) \\ si_0O_1(OCH_4)_4 & (-803.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-199.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-199.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-215.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-215.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-215.0) \\ (CH_3)_{51(0C_2H_4)_2} & (-215.0) \\ (CH_3)_{51(0C_4H_4)_2} & (-208.0) \\ (C_4H_3)_{51(0C_4H_4)_2} & (-208.0) \\ (C_4H_3)_{51(0C_4H_5)_3} & (-330.0) \\ (C_4H_3)_{51(0C_4H_5)_4} & (-300.0) \\ (C_4H_3)_{51(0C_4H_5)_4} & (-300.0) \\ (C_4H_3)_{51(0C_4H_5$	$C_2\Pi_5S\Pi_3$	(-17)										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_{2}\Pi_{5})_{2}S\Pi_{2}$	(-36, 0)								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(C.H.).Si	-44 0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHSiH.	-1.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LCH SiH.	-31.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n-CiHoSiHo	(-27.0)								263		
$\begin{array}{cccc} (C_{4}H_{0})_{8}SiCl_{2} & -50.0 & 263 \\ Si(OCH_{4})_{4} & -300.3 & 263 \\ Si(OC_{4}H_{5})_{4} & -322.0 & 263 \\ Si(O-C_{4}H_{7})_{4} & -346.0 & 263 \\ Si_{2}O(OCH_{4})_{8} & -540.0 & 263 \\ Si_{2}O(OCH_{4})_{8} & -803.0 & 263 \\ (CH_{4})_{2}Si(OC_{4}H_{5})_{2} & -199.0 & 263 \\ (r-C_{4}H_{7})_{2}Si(OC_{4}H_{5})_{2} & -215.0 & 263 \\ (CH_{4})_{2}Si(OC_{4}H_{5})_{2} & -215.0 & 263 \\ (CH_{4})_{2}Si(OH)_{2} & -192.0 & 263 \\ (CH_{4})_{2}Si(OH)_{2} & -192.0 & 263 \\ (CH_{4})_{2}Si(OH)_{2} & -136.0 & 263 \\ Si_{2}O(CH_{4})_{8} & -350.0 & 263 \\ Si_{2}O(CH_{4})_{8} & -351.0 & 263 \\ Si_{4}O_{3}(CH_{4})_{18} & -351.0 & 263 \\ Si_{4}O_{3}(CH_{4})_{18} & -351.0 & 263 \\ (-488.0 & 263 & 263 \\ -488.0 & 263 \\ \end{array}$	$(CH_{2})_{s}Si(i - C_{s}H_{2})_{s}$	-47.0								263		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_{\alpha}H_{\beta})_{\alpha}SiCl_{\alpha}$	-50.0								263		
$\begin{split} Si(OC_2H_6)_4 & -322.0 & 263 \\ Si(O-C_3H_7)_4 & -346.0 & 263 \\ Si_2O(OCH_3)_6 & -540.0 & 263 \\ Si_3O_2(OCH_3)_8 & -803.0 & 263 \\ (CH_4)_2Si(OC_2H_5)_2 & -199.0 & 263 \\ (n-C_8H_7)_2Si(OC_2H_6)_2 & -215.0 & 263 \\ (CH_4)_2Si(OH)_2O & -330.0 & 263 \\ (CH_4)_2Si(OH)_2 & -192.0 & 263 \\ (CH_4)_2Si(OH)_2 & -192.0 & 263 \\ (CH_4)_2Si(OH)_2 & -136.0 & 263 \\ (C_4H_6)_2Si(OH)_2 & -136.0 & 263 \\ Si_2O_2(CH_4)_8 & -203.0 & 263 \\ Si_3O_2(CH_4)_8 & -350.0 & 263 \\ Si_3O_2(CH_4)_8 & -351.0 & 263 \\ Si_4O_4(CH_4)_{18} & -405.0 & 263 \\ Si_4O_4(CH_4)_{18} & -405.0 & 263 \\ -488.0 & 263 \\ \end{split}$	Si(OCH ₃) ₄	-300.3								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si(OC ₂ H ₅) ₄	-322.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Si(O-iC_3H_7)_4$	-346.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si ₂ O(OCH ₃) ₆	-540.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si ₃ O ₂ (OCH ₃) ₈	-803.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(CH_3)_2Si(OC_2H_5)_2$	-199.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(n-C_3H_7)_2Si(OC_2H_5)_2$	-215.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(CH ₃) ₂ (SiOH) ₂ O	-330.0								263		
$\begin{array}{cccc} (C_2H_5)_2 Si(OH)_2 & -208.0 & 263 \\ (C_6H_5)_2 Si(OH)_2 & -136.0 & 263 \\ Si_2 O(CH_3)_6 & -203.0 & 263 \\ Si_3 O_2 (CH_3)_8 & -350.0 & 263 \\ Si_3 O_2 (CH_3)_8 & -351.0 & 263 \\ Si_4 O_3 (CH_3)_{19} & -405.0 & 263 \\ & -527.0 & 263 \\ & -488.0 & 263 \end{array}$	$(CH_3)_2Si(OH)_2$	-192.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_2H_5)_2Si(OH)_2$	-208.0								263		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C_6H_5)_2Si(OH)_2$	-136.0								263		
$\begin{array}{cccccccc} Si_3O_2(CH_3)_8 & -350.0 & 263 \\ Si_3O_2(CH_3)_8 & -351.0 & 263 \\ Si_4O_3(CH_3)_{19} & -405.0 & 263 \\ & -527.0 & 263 \\ & -488.0 & 263 \end{array}$	$S1_2O(CH_3)_6$	-203.0								203		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Sl_3U_2(CH_3)_8$	- 350.0								203		
-527.0 263 -488.0 263	$SI_3U_2(CH_3)_8$ SI O (CU)	- 351.0								203		
-488.0 263	S14U3(CH3)10									263		
		-488.0								263		

Compounds Containing Unique Groups

Table XXXI (Continued)									
Compound	$\Delta H_{\mathrm{f}}^{\circ}{}_{298}$	S_{298}°	<u>300°</u>	400°	C 500°	600°	800°	1000°	Rej
$ \frac{Si_5O_4(CH_3)_{12}}{Si_2(OCH_3)_6} $ $ HC \equiv CSiH_3 $ $ H_3SiGeH_3 $	-667.0 -448.0 27.8	64.27	17.31	20.56	23.05	25.05	28.14	30.35	263 263 306 305

Table XXXII

Corrections

Group type	gauche	cis	ortho	Ring or steric strain	Other
Alkanes	ΔH_{t}°	•••	•••	•••	•••
Alkenes	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$	$\Delta H_{\rm f}^{\circ}$, S°, $C_{\rm p}^{\circ}$	•••	• • •	
Alkynes		• • •		• • •	
Aromatics		•••	$\Delta H_{\rm f}^{\circ}, S^{\circ}, C_{\rm p}^{\circ}$	• • •	•••
Polyaromatics	•••	•••	$\Delta H_{\rm f}^{\circ}, S^{\circ}, C_{\rm p}^{\circ}$	$\Delta H_t^{\circ}, S^{\circ}, C_{p}^{\circ}$	Conjugation correc- tions to enthalpy
Ether oxygen	$\Delta {H}_{ m f}^{\circ}$	•••		• • •	•••
Ditertiary ethers		• • •	•••	ΔH_{i}°	•••
Aliphatic nitrogen	$\Delta {m H_{ m f}}^{\circ}$	• • •	• • •	• • •	•••
Pyridine		• • •	$\Delta H_{f}^{\circ a}$	• • •	
Halogen (except F)	$\Delta H_{\mathbf{f}}^{\circ \mathbf{b}}$		$\Delta {H_{\mathrm{f}}}^{o}$	•••	
Fluorine		•••	$\Delta {H_{\mathbf{f}}}^{\circ}$	• • •	•••
Carbon-boron	$\Delta H_{ m f}^{\circ}$		•••	• • •	•••

^a Also for para substituents. ^b Only for halogen against halogen.

(c) σ is the symmetry number and includes internal, as well as external, symmetry. In these calculations, care must be taken to avoid duplication of rotations as can occur when external and internal rotors share a common axis, *e.g.*, in CH₃-CH₃ for which $\sigma_{int} = 3$ and $\sigma_{ext} = 3 \times 2$, *i.e.*, $\sigma_{tot} = 3 \times 3 \times 2 = 18$. If σ_{int} is calculated as 3×3 , then σ_{ext} is only 2; otherwise duplicate rotomers were included in the calculation. For the general molecule, where the above complication is absent, the total symmetry number is evaluated as

$$\sigma_{\text{tot}} = \sigma_{\text{ext}} \prod_{i=1}^{1} (\sigma_{\text{int}})_i$$

where $(\sigma_{int})_i$ is the rotational degeneracy of the *i*th rotor, *e.g.*, 3 for methyl, 2 for $-BF_2$, etc., and σ_{ext} is the rotational degeneracy of the molecule as a whole, *e.g.*, 2 for acetone, CH₃(C=O)-CH₃. The correction $-R \ln \sigma_{tot}$ must be added to a calculated S° value.

(d) If the molecule is optically active, $R \ln n$ must be added to its entropy estimate, where n is the total number of stereomers of equal energy.

(e) Conformational corrections are applied by adding once for each interaction in the molecule, the value of the appropriate correction to the property to be calculated. If no correction is listed, such interaction as may exist is already included in the relevant groups in as many cases as possible.

The nature of the estimation of the corrections has already been discussed under the appropriate group type, and their values are listed in the relevant group tables. A summary of the types of correction associated with various classes of compounds is given in Table XXXII. Care should, however, be exercised when calculating properties of any molecule where large groups, several carbon atoms apart, are forced closely together, *e.g.*, in

Predicted values for such compounds may be in error by precisely the value of the distant interaction, *i.e.*, in the above case, the interaction between the *t*-butyl group and the ring hydrogen or methyl. The predicted value thus provides a useful model to estimate the magnitude of such interactions which, as a rough guide, may be expected to arise when atoms can approach to less than the sum of their van der Waals radii. This may be estimated from a molecular model.

(f) Examples Acetone

⁽³⁰⁶⁾ M. G. Krishna-Pillai, K. Ramaswamy, and S. G. Gnanadesikan, Czech. J. Phys., B16, 150 (1966).

 $C_p^{\circ}(300^{\circ}\text{K}) = 2 \times \text{C-(H)}_{a}(\text{C}) + 1 \times \text{CO-(C)}_{a}$ = 2 × 6.19 + 5.59 = 17.97 cal/mole

Triethylamine

This has the groups $3 \times C - (C)(H)_3 + 3 \times C - (N)(C)(H)_2 + N - (C)_3$ $\Delta H_t^\circ = 3 \times -10.08 = -30.24$ $+ 3 \times - 6.6 = -19.8$ -50.04 + 24.4 = +24.4 + 3 gauche interactions at 0.8 each = +2.4 $\therefore \Delta H_t^\circ = -50.04 + 26.8 = -23.24 \text{ kcal/mole}$ $\Delta H_t^\circ \text{ obsd } = -23.9 \text{ kcal/mole}$

1,1-Dimethylhydrazine

This has the groups

$$C_{(N)(H)_3} + N_{(N)(C)_2} + N_{(N)(H)_2}$$

$$\sigma_{rot} = 3 \times 3 = 9 \text{ and two optical isomers exist}$$

$$S^{\circ} = 2 \times 30.41 = +60.82$$

$$1 \times -13.8 = -13.8$$

$$1 \times +29.13 = +29.13$$

$$+89.95$$

$$-R \ln (3 \times 3/2) = -2.98$$

$$-16.78$$

i.e.

$$S^{\circ} = +89.95 - 16.78 = 73.17 \text{ cal/mole} (\text{obsd } 72.82 \text{ cal/mole})$$

This section prepared by S. W. Benson and F. R. Cruickshank.

Together with Dr. S. W. Benson, the authors of the various sections of this joint project were: hydrocarbons, D. M. Golden and H. E. O'Neal; oxygen compounds, R. Shaw; nitrogen compounds, R. Walsh; halogen compounds, A. S. Rodgers; sulfur, boron, and organometallic compounds, G. R. Haugen; sections I, II, VIII, inclusion of recent data, and construction of the whole as a review, F. R. Cruickshank.

Table XXXIII

Hydrocarbon	Groups
-------------	--------

						C°				
Group	$\Delta H_{f}^{\circ}{}_{298}$	$S^{\circ}_{_{298}}$	300°	4 00°	500°	600°	800°	1000°	1500°	
C-(H) ₃ (C)	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58	_
$C_{-}(H)_{2}(C)_{2}$	-4.95	9.42	5.50	6.95	8.25	9.35	11.07	12.34	14.25	
C-(H)(C) ₃	-1.90	-12.07	4.54	6.00	7.17	8.05	9.31	10.05	11.17	
C(C) ₄	0.50	-35.10	4.37	6.13	7.36	8.12	8.77	8.76	8.12	
C_{d} -(H) ₂	6.26	27.61	5.10	6.36	7.51	8.50	10.07	11.27	13.19	
C _d -(H)(C)	8.59	7.97	4.16	5.03	5.81	6.50	7.65	8.45	9.62	
C_{d} –(C) ₂	10.34	-12.7	4.10	4.61	4.99	5.26	5.80	6.08	6.36	
$C_d - (C_d)(H)$	6.78	6.38	4.46	5.79	6.75	7.42	8.35	8.99	9.98	
$C_d - (C_d)(C)$	8.88	-14.6	(4.40)	(5.37)	(5.93)	(6.18)	(6.50)	(6.62)	(6.72)	
$[C_d - (C_B)(H)]$	6.78	6.4	4.46	5.79	6.75	7.42	8.35	8.99	9.98	
$C_d - (C_B)(C)$	8.64	(-14.6)	(4.40)	(5.37)	(5.93)	(6.18)	(6.50)	(6.62)	(6.72)	
$[C_d - (C_t)(H)]$	6.78	6.4	4.46	5.79	6.75	7.42	8.35	8.99	9.98	
$C - (C_d)(C)(H)_2$	-4.76	9.8	5.12	6.86	8.32	9.49	11.22	12.48	14.36	
$C_{-}(C_d)_2(H)_2$	-4.29	(10.2)	(4.7)	(6.8)	(8.4)	(9.6)	(11.3)	(12.6)	(14.4)	
$C_{-}(C_{d})(C_{B})(H)_{2}$	-4.29	(10.2)	(4.7)	(6.8)	(8.4)	(9.6)	(11.3)	(12.6)	(14.4)	
$C_{-}(C_{t})(C)(H)_{2}$	-4.73	10.3	4.95	6.56	7.93	9.08	10.86	12.19	14.20	
$C_{-}(C_{B})(C)(H)_{2}$	-4.86	9.3	5.84	7.61	8.98	10.01	11.49	12.54	13.76	
$C_{-}(C_{d})(C)_{2}(H)$	-1.48	(-11.7)	(4.16)	(5.91)	(7.34)	(8.19)	(9.46)	(10.19)	(11.28)	
$C - (C_t)(C)_2(H)$	-1.72	(-11.2)	(3.99)	(5.61)	(6.85)	(7.78)	(9.10)	(9.90)	(11.12)	
$C - (C_B)(C)_2(H)$	-0.98	(-12.2)	(4.88)	(6.66)	(7.90)	(8.75)	(9.73)	(10.25)	(10.68)	
C(C _d)(C)₃	1.68	(-34.72)	(3.99)	(6.04)	(7.43)	(8,26)	(8.92)	(8.96)	(8.23)	
$C \sim (C_B)(C)_3$	2.81	(-35.18)	(4.37)	(6.79)	(8.09)	(8.78)	(9.19)	(8.96)	(7.63)	
C _t -(H)	26.93	24.7	5.27	5.99	6.49	6.87	7.47	7.96	8.85	
$C_t - (C)$	27.55	6.35	3.13	3.48	3.81	4.09	4.60	4.92	6.35	
$C_t - (C_d)$	29.20	(6.43)	(2.57)	(3.54)	(3.50)	(4.92)	(5.34)	(5.50)	(5.80)	
$C_t - (C_B)$	(29.20)	6.43	2.57	3.54	3.50	4.92	5.34	5.50	5.80	
С _в (Н)	3.30	11.53	3.24	4.44	5.46	6.30	7.54	8.41	9.73	
C_{B} –(C)	5.51	-7.69	2.67	3.14	3.68	4.15	4.96	5.44	5.98	
C_{B} -(C_{d})	5.68	-7.80	3.59	3.97	4.38	4.72	5.28	5.61	5.75	
$[C_B - (C_t)]$	5.7	-7.80	3.59	3.97	4.38	4.72	5.28	5.61	5.75	
C_{B} –(C_{B})	4.96	-8.64	3.33	4.22	4.89	5.27	5.76	5.95	(6.05)	
Ca	34.20	6.0	3.9	4.4	4.7	5.0	5.3	5.5	5.7	

		Next	t-Nearest N	eighbor Cor	rrections	C°			
Group	$\Delta H_{ m f}^{\circ}{}_{ m 293}$	$S^{\circ}_{\scriptscriptstyle 293}$	<u>300°</u>	400°	500°	600°	800°	1000°	1500°
Alkane gauche correction	0.80								
Alkene gauche correction	0.50								
cis correction	1.004	b	-1.34	-1.09	-0.81	-0.61	-0.39	-0.26	0
ortho correction	0.57	-1.61	1.12	1.35	1.30	1.17	0.88	0.66	-0.05
	Cor	rections to	be Applied	to Ring Co	mpound Es	timates			
Ring (σ)	$\Delta H_{ m f}^{\circ}{}_{ m 293}$	$S^{\circ}_{_{298}}$	<u>300°</u>	4 00°	500°	600°	800°	1000°	1500°
Cyclopropane (6)	27.6	32.1	-3.05	-2.53	-2.10	-1.90	-1.77	-1.62	(-1.52)
Methylenecyclopropene	40.9								
Cyclopropene (2)	53.7	33.6							
Cyclobutane (8)	26.2	29.8	-4.61	-3.89	-3.14	-2.64	-1.88	-1.38	-0.67
Cyclobutene (2)	29.8	29.0	-2.53	-2.19	-1.89	-1.68	-1.48	-1.33	-1.22
Cyclopentane (10)	6.3	27.3	-7.50	-6.49	-5.40	-4.37	-2.93	-1.93	-0.37
Cyclopentene (2)	5.9	25.8	-5.98	-5.35	-4.89	-4.14	-2.93	-2.26	-1.08
Cyclopentadiene	6.0								
Cyclohexane (6)	0	18.8	-6.40	-4.60	-3.30	-1.60	0.82	1.98	3.19
Cyclohexene (2)	1.4	21.5	-4.28	-3.04	-1.98	-1.43	-0.29	0.08	0.81
Cyclohexadiene-1,3	4.8								
Cyclohexadiene-1,4	0.5								
Cycloheptane (1)	6.4	15.9							
Cycloheptene	5.4								
Cycloheptadiene-1,3	6.6								
Cycloheptatriene-1,3,5 (1)	4.7	23.7							
Cyclooctane (8)	9.9	16.5							
cis-Cvclooctene	6.0								
trans-Cyclooctene	15.3								
Cvclooctatriene-1.3.5	8.9								
Cvclooctatetraene	17.1								
Cyclononane	12.8								
cis-Cyclononene	9.9								
trans-Cyclononene	12.8								
Spiropentane (4)	63.5	67.6							
Bicyclo[1.1.0]butane (2)	67.0	69.2							
Bicyclo[2.1.0]pentane	55.3								
Bicyclo[3.1.0]hexane	32.7								
Bicyclo[4.1.0]heptane	28.9								
Bicyclo[5.1.0]octane	29.6								
Bicyclo[6,1,0]nonane	31.1								

^a When one of the groups is *t*-butyl, *cis* correction = 4.00; when both are *t*-butyl, *cis* correction = ~ 10.00 ; and when there are two *cis* corrections around one double bond, the total correction is 3.00. ^b +1.2 for but-2-ene, 0 for all other 2-enes, and -0.6 for 3-enes. *Table XXXIV*

Oxygen-Containing Groups									
Group	$\Delta {H_{\mathrm{f}}}^\circ$	S°	300°	400°	500°	600°	800°	1000°	1500°
CO-(CO)(C)	-29.2								
$CO-(O)(C_d)$	-33.5								
$CO-(O)(C_B)$	-46.0								
CO-(O)(C)	-33.4	14.78	5.97	6.70		8.02	8.87	9.36	
[CO-(O)(H)4]	-29.5	34.93	7.03	7.87	8.82	9.68	11.16	12.20	
$CO-(C_d)(H)$	-31.7								
$CO-(C_B)_2$	-39.1								
$CO-(C_B)(C)$	-37.6								
$[CO-(C_B)(H)^{\bullet}$	-31.7								
$CO-(C)_2$	-31.5	15.01	5.59	6.32	7.09	7.76	8.89	9.61	
CO-(C)(H)	-29.6	34.93	7.03	7.87	8.82	9.68	11.16	12.20	
CO-(H) ₂	-27.7	53.67	8.47	9.38	10.46	11.52	13.37	14.81	
$O_{-}(CO)_2$	-50.9								
O-(CO)(O)	-19.0								
[O-(CO)(C _d) ^c]	-41.3								
0-(CO)(C)	-41.3	8.39							
O-(CO)(H) _i	-60.3	24.52	3.81	4.98	5.80	6.34	7.19	7.75	
O(O)(O) _i	(19.0)	(9.4)	(3.7)	(3.7)	(3.7)	(3.7)	(4.2)	(4.2)	(4.8)
0-(0)(C)	(-4.5)	(9.4)	(3.7)	(3.7)	(3.7)	(3.7)	(4.2)	(4.2)	(4.8)
O(O)(H)	-16.27	27.85	5.17	5.79	6.28	6.66	7.15	7.51	8.17

Table XXXIII (Continued)

			Table XX	XIV (Contin	ued)	~ ^			
Group	$\Delta H_{ m f}^{ m o}$	S°	300°	4 00°	500°	C,° 600°	800°	1000°	1500°
O-(C _d) ₂	-32.8								
$O_{-}(C_d)(C)$	-31.3								
$O_{-}(C_B)_2$	-19.3								
$O_{-}(C_{B})(C)$	-22.6								
[O-(C _B)(H) ^d]	-37.9	29.1	4.3	4.5	4.8	5.2	6.0	6.6	
O-(C)2	-23.7	8.68	3.4	3.7	3.7	3.8	4.4	4.6	
O-(C)(H)	-37.88	29.07	4.33	4.45	4.82	5.23	6.02	6.61	
C_d -(CO)(O)	6.3								
C_d -(CO)(C)	9.4								
$\begin{bmatrix} C_d - (CO)(H)^n \end{bmatrix}$	7.7								
$[C_{d} - (O)(C_{d})^{2}]$	10.3								
	8.6		4 16	5.03	5.81	6.50	7.65	8.45	9.62
C_{P} -(CO)	9.7		4,10	5.05	2101	0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0110	2102
C_{B} (0)	-1.8	10.2	3.9	5.3	6.2	6.6	6.9	6.9	
$C-(CO)_2(H)_2$	-7.2								
C-(CO)(C) ₈	1.58								
C-(CO)(C) ₂ (H)	-1.834	-12.0							
$C-(CO)(C)(H)_2$	-5.0	9.6	6.2	7.7	8.7	9.5	11.1	12.2	
[C-(CO)(H) ₃ ^{<i>i</i>}]	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58
$C-(O)_2(C)_2$	-16.8								
$C_{-}(O)_{2}(C)(H)$	-17.2								
$C - (O)_2(H)_2$	-17.7								
$C = (O)(C_B)(H)_2$	-6.6	9.7							
$C_{-}(O)(C_{d})(H)_{2}$	-6.9	22 56	1 22	6 10	7 75	7 70	8 20	8 24	
$C_{-}(0)(C)_{s}$	-0.60	-33.30	4.33	6.19	7.25 8.10	9.73	0.20	10.40	
$C_{-}(O)(C)(H)$	-7.00	10.3	4.00	6.85	8 30	9 43	11.11	12.33	
$C_{-}(0)(H)_{*}$	-10.08	30 41	6 19	7 84	9.40	10.79	13.02	14.77	17.58
Strain	10.00	50.41	0.15	1.01	5.10	10115	10102		
Ether oxygen gauche	0.3								
Ditertiary ethers	8.4								
X ·	27.6	31.4	-2.0	-2.8	-3.0	-2.6	-2.3	-2.3	
^		••••							
$\langle \rangle$	26.4	27.7	-4.6	-5.0	-4.2	-3.5	-2.6	+0.2	
	67								
0	0.7								
\bigcap	2.2								
0									
	3.5								
0	0.00								
C°									
ر _م ۲	5.4								
0~0									
ڵ	3.4								
<u> </u>									
L _o J	-6.2								
\frown	2.5								
	2.5								
⊳ ∘	6.0								
	3.4								
0~0~0	1.1								
	1.4								
	4.6								

 $\overset{\circ}{\operatorname{CO-(O)(H)}} \cong \operatorname{CO-(C)(H)}, \text{assigned. } \overset{\flat}{\operatorname{CO-(C_B)(H)}} \cong \operatorname{CO-(C_d)(H)}, \text{assigned. } \overset{\circ}{\operatorname{CO-(C)(C_d)}} \cong \operatorname{O-(CO)(C)}, \text{assigned. } \overset{d}{\operatorname{O-(C_B)(H)}} \cong \operatorname{O-(C_d)(H)}, \text{assigned. } \overset{\circ}{\operatorname{Cd-(C_d)(C)}} \cong \operatorname{O-(CO)(C)}, \text{assigned. } \overset{d}{\operatorname{O-(C_B)(H)}} \cong \operatorname{O-(C_d)(H)}, \text{assigned. } \overset{d}{\operatorname{Cd-(C_d)(C)}} \cong \operatorname{Cd-(C_d)(C)}, \text{assigned. } \overset{d}{\operatorname{Cd-(O)(C)}} \cong \operatorname{Cd-(C)(H)}, \text{assigned. } \overset{d}{\operatorname{Cd-(O)(C)}} \cong \operatorname{Cd-(C)(H)}, \text{assigned. } \overset{d}{\operatorname{Cd-(O)(H)}} \cong \operatorname{Cd-(C)(H)}, \text{assigned. } \overset{d}{\operatorname{Cd-(O)(C)}} \cong \operatorname{Cd-(C)(H)}, \text{assigned. } \overset{d}{\operatorname{Cd-(O)(H)}} \cong \operatorname{Cd-(C)(H)}, \text{assigned} = \operatorname{Cd-(C)(H)}, \text{d}{\operatorname{Cd-(O)(H)}} \cong \operatorname{Cd-(C)(H)}, \text{d}{\operatorname{Cd-(O)(H)}}$

2	4	
3	4	
_		-

Table XXXV

Nitrogen-Containing Groups^{4-c}

					C	٥			
Group	$\Delta H_{\mathrm{f}}^{\circ}$	S°	300°	4 00°	500°	600°	800°	1000°	1500°
$[C_{(N)(H)_{3}}]^{f}$	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77	17.58
$C_{-}(N)(C)(H)_{2}$	-6.6	$(9.8)^{d}$	(5.25) ^d	(6.90) ^a	(8.28) ^d	(9.39) ^d	$(11.09)^{d}$	(12.34) ^d	
$C_{-}(N)(C)_{2}(H)$	-5.2	$(-11.7)^{d}$	(4.67) ^d	$(6.32)^{d}$	(7.64) ^d	(8.39) ^d	(9.56) ^d	(10.23) ^d	
$C-(N)(C)_3$	-3.2	$(-34.1)^{d}$	(4.35) ^d	(6.16) ^d	(7.31) ^d	(7.91) ^d	(8.49) ^d	(8.50) ^d	
$C - (N_A)(C)(H)_2$	(-5.5)	(9.8)							
$C - (N_A)(C)_2(H)$	(-3.3)	(-11.7)							
$C-(N_A)(C)_3$	(-1.9)	(-34.7)							
$N-(C)(H)_2$	4.8	29.71	5.72	6.51	7.32	8.07	9.41	10.47	12.28
$N-(C)_2(H)$	15.4	8.94	4.20	5.21	6.13	6.83	7.90	8.65	9.55
N-(C) ₃	24.4	-13.46	3.48	4.56	5.43	5.97	6.56	6.67	6.50
$N-(N)(H)_2$	11.4	29.13	6.10	7.38	8.43	9.27	10.54	11.52	13.1 9
N-(N)(C)(H)	20.9	9.61	4.82	5.8	6.5	7.0	7.8	8.3	9.0
$N-(N)(C)_2$	29.2	-13.80							
$N-(N)(C_B)(H)$	22.1								
N _I (H)									
N _I -(C)	21.3								
$N_{I} - (C_B)^{e}$	16.7								
N _A -(H)	25.1	26.8	4.38	4.89	5.44	5.94	6.77	7.42	8.44
$N_A - (C)$	(32.5)	(8.0)							
$N-(C_B)(H)_2$	4.8	29.71	5.72	6.51	7.32	8.07	9.41	10.47	12.28
$N-(C_B)(C)(H)$	14.9								
$N-(C_B)(C)_2$	26.2								
$N-(C_B)_2(H)$	16.3								
$C_B-(N)$	-0.5	-9.69	3.95	5.21	5.94	6.32	6.53	6.56	
N _A -(N)	23.0								
CO-(N)(H)	-29.6	34.93	7.03	7.87	8.82	9.68	11.16	12.20	
CO-(N)(C)	-32.8	16.2	5.37	6.17	7.07	7.66	9.62	11.19	
N-(CO)(H) ₂	-14.9	24.69	4.07	5.74	7.13	8.29	9.96	11.22	
N-(CO)(C)(H)	-4.4	(3.9) ^d							
$N-(CO)(C)_2$									
$N-(CO)(C_B)(H)$	+0.4								
N-(CO) ₂ (H)	-18.5								
$N-(CO)_2(C)$	-5.9								
$N-(CO)_2(C_B)$	-0.5								
$C-(CN)(C)(H)_2$	22.5	40.20	11.10	13.40	15.50	17.20	19.7	21.30	
$C-(CN)(C)_2(H)$	25.8	19.80	11.00	12.70	14.10	15.40	17.30	18.60	
C-(CN)(C)3		-2.80							
$C - (CN)_2(C)_2$		28.40							
C_d -(CN)(H)	37.4	36.58	9.80	11.70	13.30	14.50	16.30	17.30	
C_d -(CN) ₂	84.1								
C_d -(NO ₂)(H)		44.4	12.3	15.1	17.4	19.2	21.6	23.2	25.3
C_B -(CN)	35.8	20.50	9.8	11.2	12.3	13.1	14.2	14.9	
C_t -(CN)	63.8	35.40	10.30	11.30	12.10	12.70	13.60	14.30	15.30
$C - (NO_2)(C)(H)_2$	-15.1	(48.4) ^d							
$C - (NO_2)(C)_2(H)$	-15.8	(26.9) ^d							
$C-(NO)_2(C)_3$		(3.9) ^d							
$C - (NO_2)_2(C)(H)$	-14.9								
0-(NO)(C)	-5.9	41.9	9.10	10.30	11.2	12.0	13.3	13.9	14.5
O-(NO)₂(C)	-19.4	48.50							
		Corrections	to be Applied	to Ring Co	mound Est	mates			
Ethyleneimine		Concentions	to or Applied	i to King CO	mpound Esti	mates			
	27.7	(31.6 ^d							
ŃH		\/							
Azetidine									
	(26.2) ^d	(29.3) ^d							
Pyrrolidine									
	<i>.</i>	04 -	<i>.</i> . .		4		• •-		
$\langle \rangle$	6.8	26.7	-0.17	-5.58	-4.80	-4.00	-2.87	-2.17	
NH Diposiding									
riperioine									
\cap	1.0								

^a N_I = double-bonded nitrogen in imines; $N_I-(C_B)$ = pyridine N. N_A = double-bonded nitrogen in azo compounds. ^b No *cis* corrections applied to imines or azo compounds. ^c gauche corrections of +0.8 kcal/mole to ΔH_i^c applied just as for hydrocarbons. ^d Estimates by authors; see text under appropriate section. ^e For *ortho* or *para* substitution in pyridine add -1.5 kcal/mole per group. ^f C-(N_A)(H)₃ \equiv C-(N)(H)₃ \equiv C-(N)(H)₃ \equiv C-(N)(H)₃ \equiv C-(N)(H)₃

Table XXXVI

Approximate Group Contributions to ΔH_t° at 25° and 1 Atm: Miscellaneous Compounds

Group	$\Delta H_{\mathrm{f}}^{\circ}$	Data Sources and References
$N-(NO_2)(C)_2$	17.8	From $\Delta H_{f}^{\circ}((CH_{2})_{2}NNO_{2}) = -0.3$ kcal/mole and $\Delta H_{f}^{\circ}((C_{2}H_{5})_{2}NNO_{2}) = -13.8$ kcal/mole ^a
$C_{-}(N)_{3}(C)(H)_{2}$	70	From $\Delta H_f^{\circ}(C_2H_5N_3) = 59 \text{ kcal/mole} (ref 170)$
$N - (N)(C_B)_2$	36.3	From $\Delta H_f^{\circ}((C_6H_5)_2NN(C_6H_5)_2) = 144.5 \text{ kcal/mole} (ref 119)$
$N_I - N_I$	21.6	From $\Delta H_f^{\circ}(C_6H_5CH=NN=CHC_6H_5) = 104.2 \text{ kcal/mole (ref 138)}$
N _I –C _B C _B –N _I	$\left. \begin{array}{c} 14.1 \\ -0.5 \end{array} \right\}$	From $\Delta H_t^{\circ}(C_6H_5CH=NC_6H_5) = 61.4$ kcal/mole (ref 138)
$C_{-}(NO)(C)(H)_{2}$	19.1	From $\Delta H_f^{\circ}(C_8H_5NO) = 9 \text{ kcal/mole}, \Delta H_f^{\circ}(i-C_8H_7NO) = 2 \text{ kcal/mole}, \Delta H_f^{\circ}(i-C_4H_9NO) = -7$
$C-(NO)(C)_2(H)$	22.2 }	kcal/mole. These estimates were, in turn, based upon primary, secondary, and tertiary C-NO
C-(NO)(C)3	23.2	bond strengths of 38.5, 37, and 35.5 kcal/mole, respectively (see text)
N-(O)(H) ₂	4.8	
N-(O)(C)(H)	12.2	From $\Delta H_f^{\circ}(NH_2OH) = -9.3$ kcal/mole $\Delta H_f^{\circ}(CH_3NHOH) = -12.0$ kcal/mole, and
O-(N)(H)	-14.1	$\Delta H_1^{\circ}(NH_2OCH_4) = -6.2 \text{ kcal/mole}$ (see text)
0-(N)(C)	-0.9	
N _I -(OH)-5	—5.0 [°]	See text
$C - (N)_2(H)_2$	-12.1	From $\Delta H_t^{\circ}(1) = 9.4$ kcal/mole (see text)

^a From R. C. Cass, S. E. Fletcher, C. T. Mortimer, P. G. Quincey, and H. D. Springall, J. Chem. Soc., 958 (1958).

Table XXXVII

Haiogen-Containing Groups

					C.°			
Group	$\Delta {H_{\mathrm{f}}}^{\circ}$	S°	300°	4 00°	500°	° 600°	800°	1000°
$C_d - (F)_2$	-77.5	37.3	9.7	11.0	12.0	12.7	13.8	14.5
C_d -(Cl) ₂	-1.8	42.1	11.4	12.5	13.3	13.9	14.6	15.0
$C_d - (Br)_2$		47.6	12.3	13.2	13.9	14.3	14.9	15.2
C_{d} -(F)(Cl)		39.8	10.3	11.7	12.6	13.3	14.2	14.7
C_d -(F)(Br)		42.5	10.8	12.0	12.8	13.5	14.3	14.7
C_d -(Cl)(Br)		45.1	12.1	12.7	13.5	14.1	14.7	
C_{d} -(F)(H)	-37.6	32.8	6.8	8.4	9.5	10.5	11.8	12.7
C_d -(Cl)(H)	2.1	35.4	7.9	9.2	10.3	11.2	12.3	13.1
C_d -(Br)(H)	12.7	38.3	8.1	9.5	10.6	11.4	12.4	13.2
C_d -(I)(H)	24.5	40.5	8.8	10.0	10.9	11.6	12.6	13.3
C_t -(Cl)		33.4	7.9	8.4	8.7	9.0	9.4	9.6
$C_t - (Br)$		36.1	8.3	8.7	9.0	9.2	9.5	9.7
$C_t - (I)$		37.9	8.4	8.8	9.1	9.3	9.6	9.8
			Arenes					
C_{B} -(F)	-42.8	16.1	6.3	7.6	8.5	9.1	9.8	10.2
C_{B} -(Cl)	-3.8	18.9	7.4	8.4	9.2	9.7	10.2	10.4
C_{B} -(Br)	10.7	21.6	7.8	8.7	9.4	9.9	10.3	10.5
C _B -(I)	24.0	23.7	8.0	8.9	9.6	9.9	10.3	10.5
$C - (C_B)(F)_{i}$	-162.7	42.8	12.5	15.3	17.2	18.5	20.1	21.0
$C - (C_B)(Br)(H)_2$	-6.9							
$C_{-}(C_{B})(I)(H)_{2}$	8.4							

Group	ΛH°	S°	300°	400°	500°	600°	800°	1000
Group								1000
	С	orrections for	or Next-Nea	arest Neigh	bors			
ortho (F)(F)	5.0	0	0	0	0	0	0	0
ortho (Cl)(Cl)	2.2							
ortho (alk)(halogen)	0.6							
cis (halogen) (halogen)	(0)							
cis (halogen)(alk)	(0)							
C-(F) ₂ (C)	-158.4	42.5	12.7	15.0	16.4	17.9	19.3	20.0
$C_{-}(F)_{2}(H)(C)$	(-109.3)	39.1	9.9	12.0		15.1		
$C-(F)(H)_2(C)$	-51.8	35.4	8.1	10.0	12.0	13.0	15.2	16.6
$C-(F)_2(C)_2$	-97.0	17.8	9.9	11.8	13.5			
$C-(F)(H)(C)_2$	-48.4	(14.0)						
C-(F)(C) ₃	-43.9							
$C-(F)_2(Cl)(C)$	-106.3	40.5	13.7	16.1	17.5			
C-(Cl) ₃ (C)	-20.7	50.4	16.3	18.0	19.1	19.8	20.6	21.0
$C-(Cl)_2(H)(C)$	(-18.9)	43.7	12.1	14.0	15.4	16.5	17.9	18.7
$C - (Cl)(H)_2(C)$	-15.6	37.8	8.9	10.7	12.3	13.4	15.3	16.7
$C-(Cl)_2(C)_2$	(-19.5)							
C-(Cl)(H)(C) ₂	-12.8	17.6	9.0	9.9	10.5	11.2		
C-(Cl)(C) ₃	-12.8	-5.4	9.3	10.5	11.0	11.3		
C(Br)₃(C)		55.7	16.7	18.0	18.8	19.4	19.9	20.3
$C-(Br)(H)_2(C)$	-5.4	40.8	9.1	11.0	12.6	13.7	15.5	16.8
$C-(Br)(H)(C)_2$	-3.4							
C–(Br)(C)₃	-0.4	-2.0	9.3	11.0				
$C-(I)(H)_2(C)$	7.95	42.5	9.2	11.0	12.9	13.9	15.8	17.2
$C-(I)(H)(C)_2$	10.7	22.2	(8.7)					
C-(I)(C) ₃	13.0	(0.0)	(9.7)					
C-(Cl)(Br)(H)(C)		45.7	12.4	14.0	15.6	16.3	17.9	19.0
$N-(F)_2(C)$	-7.8							
C-(Cl)(C)(O)(H)	-22.3	15.4	(9.0)	(9.9)	(10.5)	(11.2)		
	C	orrections fo	or Next-Nea	rest Neighl	bors			
gauche (halogen) (alk)	0.0	0	0	0	0	0	0	0
g <i>auche</i> (halogen)								
(exclusive of F)	1.0							
gauche (F) (halogen)	0.0							

Table XXXVII (Continued)

Table XXXVIII

Sulfur-Containing Groups

						<u> </u>		
Group	$\Delta H_{\mathbf{f}}^{\circ}$	S°	300°	4 00°	500°	600°	800°	1000°
[C-(H) ₃ (S) ^a]	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77
$C_{-}(C)(H)_{2}(S)$	-5.65	9.88	5.38	7.08	8.60	9.97	12.26	14.15
$C-(C)_2(H)(S)$	-2.64	-11.32	4.85	6.51	7.78	8.69	9.90	10.57
C–(C)₃(S)	-0.55	-34.41	4.57	6.27	7.45	8.15	8.72	8.10
$C_{-}(C_{B})(H)_{2}(S)$	-4.73							
$C_{-}(C_{d})(H)_{2}(S)$	-6.45							
$[C_B - (S)^b]$	-1.8	10.20	3.90	5.30	6.20	6.60	6.90	6.90
$[C_d - (H)(S)^c]$	8.56	8.0	4.16	5.03	5.81	6.50	7.65	8.45
C_{d} -(C)(S)	10.93	-12.41	3.50	3.57	3.83	4.09	4.41	5.00
S-(C)(H)	4.62	32.73	5.86	6.20	6.51	6.78	7.30	7.71
$S-(C_B)(H)$	11.96	12.66	5.12	5.26	5.57	6.03	6.99	7.84
$S-(C)_2$	11.51	13.15	4.99	4.96	5.02	5.07	5.41	5.73
$S-(C)(C_d)$	9.97							
$S-(C_d)_2$	-4.54	16.48	4.79	5.58	5.53	6.29	7.94	9.73
$S-(C_B)(C)$	19.16							
$S-(C_B)_2$	25,90							
S-(S)(C)	7.05	12.37	5.23	5.42	5.51	5.51	5.38	5.12
$S-(S)(C_B)$	14.5							
$S-(S)_2$	3.04	13.36	4.66	4.97	5.13	5.23	5.33	5.39
$[C-(SO)(H)_{3}^{d}]$	-10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77
$C-(C)(SO)(H)_2$	-7.72							
C–(C)₃(SO)	-3.05							
$C-(C_d)(SO)(H)_2$	-7.35							

Table XXXVIII (Continued)										
Group	ΔH_{t}°	S°	300°	400°	C 500°	° 600°	800°	<i>1000</i> °		
[C _B -(SO)*] SO-(C) ₂	2.3 -14.41	18.10	8.88	10.03	10.50	10.79	10.98	11.17		
$[C_{(SO_2)}(H)_3]$	-12.0 -10.08	30.41	6.19	7.84	9.40	10.79	13.02	14.77		
C-(C)(SO ₂)(H) ₂	-7.68									
$C-(C)_2(SO_2)(H)$	-2.62									
$C = (C)_{\mathfrak{s}}(SO_2)$	0.61									
$C_{-}(C_{3})(SO_{2})(H)_{2}$										
$[C_{B} - (SO_{2})^{q}]$	2.3									
C_d -(H)(SO ₂)	12.53									
C_d -(C)(SO ₂)	14.47									
$SO_2 - (C)_2$	-69.74	20.90	11.52							
$SO_2 - (C_B)$ $SO_2 - (C_B)_2$	-68.58									
$[\mathrm{SO}_2 - (\mathrm{C}_d)(\mathrm{C}_{\mathrm{B}})^{\hbar}]$	-68.58									
SO_2 -(C_d) ₂	-73.58									
$SO_2 - (SO_2)(C_B)$	-76.25	15 43	6 6 0	6 22	7.00	7 76	0 00	0 41		
$S_{-}(H)(CO)$	-31.30 -1.41	15.43 31.20	5.59 7.63	8.09	7.09	7.70 8.17	8.89	9.01		
$C-(S)(F)_{i}$	1.11	38.9	7.05	0.02	0.12	0.17	0.50	0.47		
S-(C)(CN)	37.18	41.06	9.51	10.44	11.22	11.86	12.85	13.50		
$[\mathrm{CS-}(\mathrm{N})_2{}^i]$	-31.56	15.43	5.59	6.32	7.09	7.76	8.89	9.61		
N-(CS)(H)₂ [S_(S)(N)/4]	12.78	29.19	6.07	7.28	8.18	8.91	10.09	10.98		
$N_{(S)(C)}$	29.9									
[SO-(N)2 ⁷]	-31.56									
N-(SO)(C) ₂	16.0									
$[SO_2 - (N)_2^m]$	-31.56									
$N = (S \cup 2)(U)_2$	-20.4		-							
Bing (-)		Organosulfi	ır Compou	nds Ring C	orrections					
$\frac{King(\sigma)}{(\gamma) S(\sigma)}$										
(a) <u>~</u> (2) s	17.7	29.47	-2.85	-2.59	-2.66	-3.02	-4.32	-5.82		
(b) 🚫 (2)	19.37	27.18	-4.59	-4.18	-3.91	-3.91	-4.60	-5.70		
(c) $\langle S \rangle$ (2)	1.73	23.56	4.90	-4.67	-3.68	-3.66	-4.41	-5.57		
	0	17 46	-6.22	-4 26	-2 24	-0.69	0.86	1 29		
	Ū	17.40	-0.22	-4.20	-2,24	-0.09	0.00	1,27		
(e) $(\overset{S}{\frown}$ (2)	3.89									
s v v										
(f) (2)	5.07									
(g) $\langle S \rangle^n$ (1)	5.07									
(h) \sim (2)	5 74									
	J•/4									
(i) (2)	1.73	23.56	-4.90	-4.67	-3.68	-3.66	-4.41	-5.57		
<u>_</u>		Org	anophospho	orus Group	\$ ^p	-				
Group		Λ Η .Υ		N [×]		Remar	40			

Table XXXVIII (Continued)

Group	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$	S°	Remarks	
[C-(P)(H) ₈]	-10.08	30.41	$C-(P)(H)_3 \equiv C-(C)(H)_3$, assigned	
$C_{-}(P)(C)(H)_{2}$	-2.47			
[C-(PO)(H) ₁]	-10.08	30.41	$C_{-}(PO)(H)_{3} \equiv C_{-}(C)(H)_{3}$, assigned	
C-(PO)(C)(H) ₂	-3.4			
[C-(P:N)(H) ₃]	-10.08	30.41	$C-(P:N)(H)_3 \equiv C-(C)(H)_3$, assigned	
$C - (N:P)(C)(H)_{2}$	19.4			
[C _B -(P)]	-1.8		C_{B} -(P) $\equiv C_{B}$ -(O), assigned	
[C _B -(PO)]	2.3		C_B -(PO) $\equiv C_B$ -(CO), assigned	
$[C_B - (P:N)]$	2.3		$C_B - (P:N) \equiv C_B - (CO)$, assigned	
P-(C)3	7.04			

	Table XXX	XVIII (Conti	nued)
Group	$\Delta H_{\mathrm{f}}^{\circ}$	S°	Remarks
	- 50, 1		
$\mathbf{P} - (\mathbf{C}_{\mathbf{B}})_{\mathbf{a}}$	28.3		
P-(O) ₈	-66.8		
[P-(N) ₈]	-66.8		$P-(N)_3 \equiv P-(O)_3$, assigned
PO-(C)3	-72.8		
$PO-(C)(F)_2$		46.77	
$PO_{-}(C)(CI)(F)$	-123 0	57 97	
PO = (C)(C)/2 $PO = (C)(O)(C)$	-123.0 -112.6	52.91	
$PO-(C)(O)_2$	-99.5		
PO-(O)	-104.6		
PO-(O) ₂ (F)	-167.7		
PO–(C _B) ₃	-52.9		
[PO-(N) ₈]	-104.6		$PO-(N)_3 \equiv PO-(O)_3$, assigned
[O-(C)(P)]	-23.5		$O_{-}(C)(P) \equiv O_{-}(C)_2$, assigned
(\mathbf{P})	-30.7 -40.7		$\Omega_{-}(C)(PO) = \Omega_{-}(C)(CO)$ assigned
$O_{-}(H)(PO)$	-65.0		O(O)(10) = O(O)(00), assigned
$O_{-}(PO)_2$	-54.5		
[O-(P:N)(C)]	-40.7		$O-(P:N)(C) \equiv O-(C)(CO)$, assigned
$N-(P)(C)_2$	32.2		
$N-(PO)(C)_2$	17.8		
$[P:N-(C)_{3}(C)]$	0.50		$P:N-(C)_{\delta}(C) \equiv C-(C)_{4}$, assigned
$P:N-(C_B)_{\delta}(C)$ $P:N-(N_1,P_2)(C_1)(P:N_1)$	-25.7		
$\mathbf{P} \cdot \mathbf{N} = (\mathbf{N} \cdot \mathbf{P})(\mathbf{C}_{\mathbf{P}})_{\mathbf{C}}(\mathbf{P} \cdot \mathbf{N})$	-13.3 -22.9		
$P:N-(N:P)(Cl)_{P:N}$	-58.2		
$P:N-(N:P)(O)_2(P:N)$	-43.4		
	Organol	boron Grour	DS ^q
Group	$\Delta H_{\rm f}^{\circ}$	_	Remarks
[C-(B)(H)₀]	-10.08	C-($B)(H)_3 \equiv C-(C)(H)_3, \text{ assigned}$
$C - (B)(C)(H)_2$	-2.22		
$C - (B)(C)_2(H)$	1.1		
$[C-(BO_3)(H)_3]$	-10.08	C-($BO_3(H)_3 \equiv C_{-}(C)(H)_3$, assigned
$C = (BO_3)(C)(H)$	2 – 2.2 15.6		
\mathbf{B}_{d}	0.9		
B-(C)(F) ₂	-187.9		
B-(C) ₂ (Cl)	-42.7		
$B-(C)_2(Br)$	-26.9		
B-(C) ₂ (I)	-8.9	_ /	
$[B-(C)_2(O)]$	29.3	B-()	$C_{2}(O) \equiv N_{-}(C)_{2}(N)$, assigned
$[B - (C_d)(F)_2]$ $[B - (O_d)]$	- 192.9	B-()	$C_d(\Gamma)_2 = B_{-}(C)(\Gamma)_2$, assigned $O_2 = B_{-}(N)_2$, assigned
$\mathbf{B}_{-}(\mathbf{O})_{\mathbf{v}}(\mathbf{C})$	-19.7	D	
B-(O)(Cl) ₂	-61.2		
B-(O) ₂ (H)	19.9		
B-(N)3]	24.4	B- ($N_{a} \equiv N-(C)_{a}$, assigned
B -(N) ₂ (C I)	-23.8		
$\mathbf{B}^{-}(\mathbf{N})(\mathbf{C})_{2}$	-67.9		
$O_{-}(C)_{3}$	-208.7 -115.5		
O-(B)(C)	-69.43		
$N-(B)(C)_2$	-9.93		
[B -(S) ₃]	24.4	B -($S_{a} \equiv B_{-}(O)_{a}$, assigned
S-(B)(C)	-14.5		
S-(B)(C _B)	-7.8		
Motal	Group	AHe°	lps' Bomarks
Tin [4	$(S_{n})(H)$	-10.02	$\Gamma_{-}(Sn)(H)_{n} = \Gamma_{-}(C)(H)_{n}$ assigned
	$C = (Sn)(C)(H)_{3}$	-2.18	
Ċ	$C-(Sn)(C)_2(H)$	3.38	
C	C–(Sn)(C)₃	8.16	
C	$C - (Sn)(C_B)(H)_2$	-7.77	

	Table XXXVIII (Continuea)								
	Metal	Group	ΔH_{i}°	Remarks					
		$[C_{B}-(Sn)]$	5.51	$C_{B-}(Sn) \equiv C_{B-}(C)$, assigned					
		$[C_d - (S_n)(H)]$	8.77	$C_d - (S_n)(H) \equiv C_d - (C)(H)$, assigned					
		Sn-(C)₄	36.2						
		$Sn-(C)_{s}(Cl)$	-9.8						
		Sn - (C) (C)	-49.2						
		$Sn - (C)(Cl)_{s}$	- 89.5						
		Sn - (C) (Br)	-1.8						
		$Sn - (C)_{*}(I)$	9.9						
		Sn-(C)(H)	34.8						
		$[Sn-(C_d)_d]$	36.2	$Sn-(C_d)_{\ell} \equiv Sn-(C)_{\ell}$, assigned					
		$Sn-(C_d)_s(Cl)$	-8.2						
		$Sn-(C_d)_{2}(Cl)_{2}$	-50.7						
		$Sn-(C_d)(Cl)_a$	-82.2						
		$Sn-(C)_3(C_d)$	37.6						
		$Sn-(C_B)_4$	26.26						
		$Sn-(C)_3(C_B)$	34.93						
		$Sn-(C)_{3}(Sn)$	26.4						
	Lead	[C-(Pb)(H) ₃]	-10.08	$C-(Pb)(H)_{\delta} \equiv C-(C)(H)_{\delta}$, assigned					
		$C-(Pb)(C)(H)_2$	-1.70						
		$Pb-(C)_4$	72.9						
	Chromium	[O-(Cr)(C)]	-23.5	$O_{-}(Cr)(C) \equiv O_{-}(Ti)(C)$, assigned					
		Cr-(O) ₄	-64.0						
,	Zinc	[C-(Zn)(H) ₃]	-10.08	$C-(Zn)(H)_3 \equiv C-(C)(H)_3$, assigned					
		$C-(Zn)(C)(H)_2$	-1.78						
		$Zn-(C)_2$	33.3						
	Titanium	[O-(Ti)(C)]	-23.5	$O_{-}(Ti)(C) \equiv O_{-}(P)(C)$, assigned					
		Ti–(O) ₄	-157						
		$[N-(Ti)(C)_2]$	39.1	$N-(Ti)(C)_2 \equiv N-(P)(C)_2$, assigned					
		$Ti-(N)_4$	-123						
	Vanadium	[O-(V)(C)]	-23.5	$O-(V)(C) \equiv O-(Ti)(C)$, assigned					
		V-(O)4	-87.0						
	Cadmium	$[C-(Cd)(H)_{3}]$	-10.08	$C-(Cd)(H)_3 \equiv C-(C)(H)_3$, assigned					
		$C-(C_d)(C)(H)_2$	-0.30						
		C_{d} -(C) ₂	46.4						
	Aluminum	[C(Al)(H) ₃]	-10.08	$C-(Al)(H)_3 \equiv C-(C)(H)_3$, assigned					
		$C-(Al)(C)(H)_2$	0.70						
		Al-(C) ₃	9.2						
	Germanium	$C-(Ge)(C)(H)_2$	-7.7						
		$[Ge-(C)_4]$	36.2	$Ge_{-}(C)_4 \equiv Sn_{-}(C)_4$, assigned					
		Ge-(Ge)(C) ₃	15.6						
	Mercury	[C–(Hg)(H) ₃]	-10.08	$C-(Hg)(H)_3 \equiv C-(C)(H)_3$, assigned					
		$C - (Hg)(C)(H)_2$	-2.68						
		$C - (Hg)(C)_2(H)$	3.62	$\mathbf{C}_{\mathbf{A}}(\mathbf{H}_{\mathbf{A}}) = \mathbf{C}_{\mathbf{A}}(\mathbf{O})$ evidential					
		$[C_B - (Hg)]$	-1.8	C_{B} -(Hg) $\equiv C_{B}$ -(O), assigned					
		$Hg_{-}(C)_{2}$	42.5						
		$Hg_{-}(C)(Cl)$	-2.82						
		Hg = (C)(BT)	4.00						
		$rg_{(C)}(I)$	13,/8 64 4						
		$H_{2} = (C_{B})_{2}$	04.4						
		$H_{a} (C) (C)$	9.9 10 1						
		$rig - (C_B)(Br)$	10.1						
		$ng - (C_B)(1)$	27.9						

Table XXXVIII (Continued)

 a C-(S)(H)₃ \equiv C-(C)(H)₃, assigned. b C_B-(S) \equiv C_B-(O), assigned. c C_d-(S)(H) \equiv C_d-(O)(H), assigned. d C-(SO)(H)₃ \equiv C-(CO)(H)₄, assigned. e C_B-(SO) \equiv C_B-(CO), assigned. f C-(SO)₂(H)₃ \equiv C-(SO)(H)₃, assigned. e C_B-(SO) \equiv C_B-(CO), assigned. k SO₂-(C_d)(C_B) \equiv SO₂-(C_B)₂, assigned. i CO-(S)(C) \equiv CO-(C)₂, assigned. i SO-(C)₂, assigned. i SO-(C)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(C)₂, assigned. i SO-(O)₂, assigned. i SO-(C)₂, assigned. i SO-(C)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(N)₂ \equiv SO-(C)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(C)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(C)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(N)₂ \equiv SO-(N)₂ \equiv SO-(N)₂ \equiv SO-(N)₂, assigned. i SO-(N)₂ \equiv SO-(N)